Log in

Quantum image encryption algorithm based on Fisher–Yates algorithm and Logistic map**

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The parallel computing power of quantum computing and the special properties of qubits provide an effective solution for image processing tasks. This paper presents a quantum image encryption algorithm based on Fisher–Yates algorithm and Logistic map**. Firstly, the Fisher–Yates algorithm is used to generate three key sequences, one of which is used to encode the coordinate qubits of the image. Using the other two keys and the preset rules, the quantum coordinate scrambling operation is designed based on the encoded coordinate qubit, which effectively scrambles the spatial information of the plaintext image. Next, another set of key sequences is generated, one of which is used to encode the color qubits of the image. Using two other key sequences and different rules, a qubit plane scrambling operation based on coded color qubits is designed, and the color information of image is scrambled successfully. Finally, the quantum key image is generated based on Logistic map**, and the key image is scrambled based on Fisher–Yates algorithm to improve the key complexity. The final ciphertext image is obtained by performing XOR operation between the original image and the scrambled key image. The complete quantum circuit diagram of the scheme is given in this paper. The experimental results and security analysis prove the effectiveness of the scheme, which provides a large key space and the computational complexity is only O(n).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Liu, S., Guo, C., Sheridan, J.T.: A review of optical image encryption techniques. Opt. Laser Technol. 57, 327–342 (2014)

    Article  ADS  Google Scholar 

  2. Ghadirli, H.M., Nodehi, A., Enayatifar, R.: An overview of encryption algorithms in color images. Sig. Process. 164, 163–185 (2019)

    Article  Google Scholar 

  3. Kaur, M., Kumar, V.: A comprehensive review on image encryption techniques. Arch. Comput. Methods Eng. 27, 15–43 (2020)

    Article  MathSciNet  Google Scholar 

  4. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)

    Article  MathSciNet  Google Scholar 

  5. Farah, M.B., Guesmi, R., Kachouri, A., Samet, M.: A novel chaos based optical image encryption using fractional fourier transform and dna sequence operation. Opt. Laser Technol. 121, 105777 (2020)

    Article  Google Scholar 

  6. Hua, Z., Zhu, Z., Chen, Y., Li, Y.: Color image encryption using orthogonal latin squares and a new 2d chaotic system. Nonlinear Dyn. 104, 4505–4522 (2021)

    Article  Google Scholar 

  7. Wang, X., Li, Y.: Chaotic image encryption algorithm based on hybrid multi-objective particle swarm optimization and dna sequence. Opt. Lasers Eng. 137, 106393 (2021)

    Article  Google Scholar 

  8. Gao, X., Mou, J., Banerjee, S., Cao, Y., **ong, L., Chen, X.: An effective multiple-image encryption algorithm based on 3d cube and hyperchaotic map. J. King Saud Univ.-Comput. Inf. Sci. 34(4), 1535–1551 (2022)

    Google Scholar 

  9. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7) (1982)

  10. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)

    ADS  MathSciNet  Google Scholar 

  11. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. Ieee (1994)

  12. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. (1996)

  13. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Quantum Information and Computation, vol. 5105, pp. 137–147. SPIE (2003)

  15. Latorre, J.I.: Image compression and entanglement. ar**v preprint ar**v:quant-ph/0510031 (2005)

  16. Venegas-Andraca, S.E., Ball, J.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  17. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  18. Zhang, Y., Lu, K., Gao, Y., Wang, M.: Neqr: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14(11), 4001–4026 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16, 1–14 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. Wang, L., Ran, Q., Ma, J., Yu, S., Tan, L.: Qrci: a new quantum representation model of color digital images. Opt. Commun. 438, 147–158 (2019)

    Article  ADS  Google Scholar 

  22. Khan, R.A.: An improved flexible representation of quantum images. Quantum Inf. Process. 18, 1–19 (2019)

    Article  MathSciNet  Google Scholar 

  23. Wang, L., Ran, Q., Ma, J.: Double quantum color images encryption scheme based on dqrci. Multimedia Tools Appl. 79, 6661–6687 (2020)

    Article  Google Scholar 

  24. Wang, B., Hao, M.-Q., Li, P.-C., Liu, Z.-B.: Quantum representation of indexed images and its applications. Int. J. Theor. Phys. 59(2), 374–402 (2020)

    Article  MathSciNet  Google Scholar 

  25. Zhang, J., Huang, Z., Li, X., Wu, M., Wang, X., Dong, Y.: Quantum image encryption based on quantum image decomposition. Int. J. Theor. Phys. 60, 2930–2942 (2021)

    Article  MathSciNet  Google Scholar 

  26. Gao, Y.-J., **e, H.-W., Zhang, J., Zhang, H.: A novel quantum image encryption technique based on improved controlled alternated quantum walks and hyperchaotic system. Physica A 598, 127334 (2022)

    Article  MathSciNet  Google Scholar 

  27. Hao, W., Zhang, T., Chen, X., Zhou, X.: A hybrid neqr image encryption cryptosystem using two-dimensional quantum walks and quantum coding. Sig. Process. 205, 108890 (2023)

    Article  Google Scholar 

  28. Gong, L.-H., He, X.-T., Cheng, S., Hua, T.-X., Zhou, N.-R.: Quantum image encryption algorithm based on quantum image xor operations. Int. J. Theor. Phys. 55, 3234–3250 (2016)

    Article  MathSciNet  Google Scholar 

  29. Wang, J., Geng, Y.-C., Han, L., Liu, J.-Q.: Quantum image encryption algorithm based on quantum key image. Int. J. Theor. Phys. 58, 308–322 (2019)

    Article  Google Scholar 

  30. Abd-El-Atty, B., Abd El-Latif, A.A., Venegas-Andraca, S.E.: An encryption protocol for neqr images based on one-particle quantum walks on a circle. Quantum Inf. Process. 18(9), 272 (2019)

    Article  ADS  Google Scholar 

  31. Zhou, S.: A quantum image encryption method based on dnacnot. IEEE Access 8, 178336–178344 (2020)

    Article  Google Scholar 

  32. Li, H.-S., Chen, X., Song, S., Liao, Z., Fang, J.: A block-based quantum image scrambling for gneqr. IEEE Access 7, 138233–138243 (2019)

    Article  Google Scholar 

  33. Zhou, R.-G., Li, Y.-B.: Quantum image encryption based on lorenz hyper-chaotic system. Int. J. Quantum Inf. 18(05), 2050022 (2020)

    Article  MathSciNet  Google Scholar 

  34. Liu, X., **ao, D., Liu, C.: Three-level quantum image encryption based on arnold transform and logistic map. Quantum Inf. Process. 20, 1–22 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  35. Hu, M., Li, J., Di, X.: Quantum image encryption scheme based on 2d s ine 2-l ogistic chaotic map. Nonlinear Dyn. 111(3), 2815–2839 (2023)

    Article  Google Scholar 

  36. Durstenfeld, R.: Algorithm 235: random permutation. Commun. ACM 7(7), 420 (1964)

    Article  Google Scholar 

  37. Gilbert, H., Handschuh, H.: Security analysis of sha-256 and sisters. In: International Workshop on Selected Areas in Cryptography, pp. 175–193. Springer (2003)

  38. Liu, H., Zhao, B., Huang, L.: Quantum image encryption scheme using arnold transform and s-box scrambling. Entropy 21(4), 343 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  39. Hu, W.-W., Zhou, R.-G., Jiang, S., Liu, X., Luo, J.: Quantum image encryption algorithm based on generalized arnold transform and logistic map. CCF Trans. High Perform. Comput. 2, 228–253 (2020)

    Article  Google Scholar 

  40. Guo, L., Du, H., Huang, D.: A quantum image encryption algorithm based on the feistel structure. Quantum Inf. Process. 21, 1–18 (2022)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China under Grant No. 62062035 and Fujian Provincial Natural Science Foundation Project under Grant No. 2023J011389.

Author information

Authors and Affiliations

Authors

Contributions

** Fan and Yiteng Zhang wrote the whole manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to ** Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

All authors consent to participate.

Consent for publication

All authors consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, P., Zhang, Y. Quantum image encryption algorithm based on Fisher–Yates algorithm and Logistic map**. Quantum Inf Process 23, 237 (2024). https://doi.org/10.1007/s11128-024-04441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04441-7

Keywords

Navigation