Log in

Multiparty sharing of quantum images based on product state of maximally entangled GHZ state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

To share images securely in the network, this paper proposes a multiparty sharing of quantum images scheme based on the basic theory of quantum state sharing. According to the number of qubits within the shared quantum image and involved participants, the product state of a certain number of maximal entanglement GHZ state with specific qubits has been chosen to act as quantum channel. To achieve the process of quantum image sharing, the dealer Alice performs local unitary operations of the Controlled-NOT gate and Hadamard gate as well as single-qubit measurement operation, and other assistant participants perform single-qubit measurement operation. On basis of Alice’s and other participants’ measurement results, the assigned participant can reconstruct the shared quantum image on his local qubits via performing local unitary operations. Since all participants in present scheme only need perform the single-qubit measurement operations, it makes the present scheme more realizable than former similar schemes. The comparisons illustrate that the present scheme possesses higher qubit efficiency. Security analysis proves that the present scheme is immune to the intercept-resend and entangled probe attacks of a third party.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Shor P.: Algorithms for quantum computation: discrete logarithms and factoring[C]. In: proceedings of 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, 1994: 124–134

  2. Long, G.L.: Grover Algorithm with zero theoretical failure rate[J]. Phys. Rev. A 64(2), 022307 (2001)

    Article  ADS  Google Scholar 

  3. Vahid, K., Alireza, B., Saber, B.: Quantum key distribution for d-level systems with generalized Bell states[J]. Phys. Rev. A 65, 052331 (2002)

    Article  Google Scholar 

  4. **e, Y.M., Lu, Y.S., Weng, C.X., et al.: Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference[J]. PRX Quantum 3, 020315 (2022)

    Article  ADS  Google Scholar 

  5. Chen, L.Q., Chen, J.Q., Chen, Q.Y., Zhao, Y.L.: A quantum key distribution routing scheme for hybrid-trusted QKD network system. Quant. Inf. Process. 22, 75 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  6. Subhankar, B., Shashank, G., Majumdar, A.S.: Device-independent quantum key distribution using random quantum states. Quant. Inf. Process. 22, 109 (2023)

    Article  MathSciNet  Google Scholar 

  7. Li, Z.H., Wang, X.Y., Chen, Z.Y., Shen, T., Yu, S., Guo, H.: Impact of non-orthogonal measurement in Bell detection on continuous-variable measurement-device-independent quantum key distribution. Quant. Inf. Process. 22, 236 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  9. Zhou, R.G., Xu, R.Q., Ian, H.: Bidirectional quantum teleportation by using six-qubit cluster state. IEEE Access 7, 44269–44275 (2019)

    Article  Google Scholar 

  10. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad[J]. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  11. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67(4), 367–374 (2022)

    Article  Google Scholar 

  12. Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65, 250311 (2022)

    Article  ADS  Google Scholar 

  13. Zhou, L., Xu, B.W., Zhong, W., Sheng, Y.B.: Device-independent quantum secure direct communication with single-photon sources. Phys. Rev. Appl. 19, 014036 (2023)

    Article  ADS  Google Scholar 

  14. Zhao, P., Zhong, W., Du, M.M., Li, X.Y., Zhou, L., Sheng, Y.B.: Quantum secure direct communication with hybrid entanglement. Front. Phys. 19(5), 51201 (2024)

    Article  ADS  Google Scholar 

  15. Zeng, H., Du, M.M., Zhong, W., Zhou, L., Sheng, Y.B.: High-capacity device-independent quantum secure direct communication based on hyper-encoding. Fond. Res. (2023). https://doi.org/10.1016/j.fmre.2023.11.006

    Article  Google Scholar 

  16. Hu, W.W., Zhou, R.G., Luo, J.: Semi-quantum secret sharing in high-dimensional quantum system using product states[J]. Chinese J. Phys. 77, 1701–1712 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  17. Hu, W.W., **ong, B.S., Zhou, R.G.: An efficient multiparty quantum secret sharing scheme using a single qudit[J]. Chin. Phys. B 32(8), 320803 (2023)

    Article  Google Scholar 

  18. Yang, Y.G., Liu, Z.C., Chen, X.B., et al.: Robust QKD-based private database queries based on alternative sequences of single-qubit measurements[J]. Sci. China-Phys. Mech. Astron. 60, 120311 (2017)

    Article  ADS  Google Scholar 

  19. Zhu, P.H., Zhong, W., Du, M.M., et al.: One-step quantum dialogue. Chin. Phys. B 33, 020302 (2024)

    Article  Google Scholar 

  20. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations[J]. Quantum Inf. Process. 15(1), 1–35 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Cai, Y.Q., Lu, X.W., Jiang, N.: A survey on quantum image processing[J]. Chin. J. Electron. 27(4), 718–727 (2018)

    Article  ADS  Google Scholar 

  22. Le Phuc, Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations[J]. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images[J]. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  24. Yang, Y.G., **a, J., Jia, X., Zhang, H.: Novel image encryption/decryption based on quantum fourier transform and double phase encoding[J]. Quantum Inf. Process. 12(11), 3477–3493 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. Shamir, A.: How to share a secret[J]. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  26. Blakley G.R. Safeguarding cryptographic key[C]. In 1979 International Workshop on Managing Requirements Knowledge (MARK), New York, NY, USA, 1979, pp. 313-318, https://doi.org/10.1109/MARK.1979.8817296.

  27. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  28. Deng, F.G., Li, X.H., Li, C.Y., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs[J]. Phys. Rev. A 72(4), 044301 (2005)

    Article  ADS  Google Scholar 

  29. Li, X.H., Zhou, P., Li, C.Y., et al.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state[J]. J. Phys. B 39(8), 1795–1983 (2006)

    Article  Google Scholar 

  30. Wang, Z.Y., Yuan, H., Shi, S.H., Zhang, Z.J.: Three-party qutrit-state sharing[J]. Eur. Phys. J. D 41(2), 371–375 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. Lee, S.M., Lee, S.W., Jeong, H., Park, H.S.: Quantum teleportation of shared quantum secret[J]. Phys. Rev. Letts. 124, 060501 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  32. Ma, X.J., Zhou, R.G., Hu, W.W.: Improved two-qubit quantum state sharing protocol based on entanglement swap** of bell states[J]. Quantum Inf. Process. 21(3), 100 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  33. Goren, G., Gustavo, R.: Generalized quantum-state sharing[J]. Phys. Rev. A 73(6), 062316 (2006)

    Article  ADS  Google Scholar 

  34. Liu, J., Liu, Y.M., Zhang, Z.J.: Generalized multiparty quantum single-qutrit-state sharing[J]. Int. J. Theor. Phys. 47(9), 2353–2362 (2008)

    Article  MathSciNet  Google Scholar 

  35. Sun, X.-M., Zha, X.-W., Qi, J.-X., Lan, Q.: High-efficient quantum state sharing via non-maximally five-qubit cluster state[J]. Acta Phys. Sin. 62(23), 20–28 (2013)

    Google Scholar 

  36. Hu, W.W., Zhou, R.G., Luo, G.F.: Conclusive multiparty quantum state sharing in amplitude-dam** channel [J]. Quantum Inf. Process. 21(1), 3 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  37. Su, C.F., Chen, C.Y.: Information hiding method based on quantum image by using Bell states[J]. Quantum Inf. Process. 19(1), 36 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. Bužek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem[J]. Phys. Rev. A 54(3), 1844–1852 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  39. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob[J]. Phys. Rev. Letts. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  40. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution[J]. Phys. Rev. A 79(3), 032341 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. Cabello, A.: Quantum key distribution in the Holevo limit [J]. Phys. Rev. Letts. 85(26), 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of Jiangxi Province under Grant No. 20232BAB212012 and No. 20232BAB211032; the doctoral funding of the Nanchang Hangkong University under Grant No. EA202204231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenWen Hu.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Ye, W. & Yang, Y. Multiparty sharing of quantum images based on product state of maximally entangled GHZ state. Quantum Inf Process 23, 238 (2024). https://doi.org/10.1007/s11128-024-04430-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04430-w

Keywords

Navigation