Log in

Approximate quantum gates compilation for superconducting transmon qubits with self-navigation algorithm

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Precise and fast qubit control is crucial when compiling quantum gates for successful implementation of quantum algorithms. However, the presence of environmental noise and the nonzero bandwidth of control pulses pose challenges for the effective control, particularly for weakly anharmonic systems such as superconducting transmon qubits. To address these problems, in this work we propose a self-navigation algorithm to approximately compile single-qubit gates with high accuracy in the context of transmon qubit. By utilizing this algorithm, the overall rotation distance for the target gate operation is significantly shorter than that of the commonly used U3 gate technique. As a result, a shorter gate time can be obtained. The necessary number of pulses and the runtime of scheme designing scale up as \(\mathcal {O}[\textrm{Log}(1/\epsilon )]\) with a small prefactor, indicating a low overhead cost. Moreover, we investigate the trade-off between effectiveness and cost, and a balance point is identified. Our results demonstrate a reduction in both gate time and noise effects, but without an increase in leakage. Our work opens up a new avenue for efficient quantum algorithm implementations with contemporary superconducting quantum technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data and code availability

The code, running environment of algorithm and all data presented in this paper are available from the corresponding author upon reasonable request or from Gitee in (https://gitee.com/mindspore/mindquantum/tree/research/paper_with_code).

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information 10th Anniversary Edition. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  2. Bishnoi, B.: Quantum Computation (2021) ar**v:2006.02799 [quant-ph]

  3. Preskill, J.: Quantum computing and the entanglement frontier. ar**v preprint ar**v:1203.5813 (2012)

  4. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Article  ADS  Google Scholar 

  5. Gong, M., Wang, S., Zha, C., Chen, M.-C., Huang, H.-L., Wu, Y., Zhu, Q., Zhao, Y., Li, S., Guo, S., et al.: Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science 372(6545), 948–952 (2021)

    Article  Google Scholar 

  6. Zhong, H.-S., Wang, H., Deng, Y.-H., Chen, M.-C., Peng, L.-C., Luo, Y.-H., Qin, J., Wu, D., Ding, X., Hu, Y., et al.: Quantum computational advantage using photons. Science 370(6523), 1460–1463 (2020). https://doi.org/10.1126/science.abe8770

    Article  ADS  Google Scholar 

  7. Wu, Y., Bao, W.-S., Cao, S., Chen, F., Chen, M.-C., Chen, X., Chung, T.-H., Deng, H., Du, Y., Fan, D., Gong, M., Guo, C., Guo, C., Guo, S., Han, L., Hong, L., Huang, H.-L., Huo, Y.-H., Li, L., Li, N., Li, S., Li, Y., Liang, F., Lin, C., Lin, J., Qian, H., Qiao, D., Rong, H., Su, H., Sun, L., Wang, L., Wang, S., Wu, D., Xu, Y., Yan, K., Yang, W., Yang, Y., Ye, Y., Yin, J., Ying, C., Yu, J., Zha, C., Zhang, C., Zhang, H., Zhang, K., Zhang, Y., Zhao, H., Zhao, Y., Zhou, L., Zhu, Q., Lu, C.-Y., Peng, C.-Z., Zhu, X., Pan, J.-W.: Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021). https://doi.org/10.1103/PhysRevLett.127.180501

    Article  ADS  Google Scholar 

  8. Zhong, H.-S., Deng, Y.-H., Qin, J., Wang, H., Chen, M.-C., Peng, L.-C., Luo, Y.-H., Wu, D., Gong, S.-Q., Su, H., et al.: Phase-programmable gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127(18) (2021). https://doi.org/10.1103/physrevlett.127.180502

  9. Zhu, Q., Cao, S., Chen, F., Chen, M.-C., Chen, X., Chung, T.-H., Deng, H., Du, Y., Fan, D., Gong, M., Guo, C., Guo, C., Guo, S., Han, L., Hong, L., Huang, H.-L., Huo, Y.-H., Li, L., Li, N., Li, S., Li, Y., Liang, F., Lin, C., Lin, J., Qian, H., Qiao, D., Rong, H., Su, H., Sun, L., Wang, L., Wang, S., Wu, D., Wu, Y., Xu, Y., Yan, K., Yang, W., Yang, Y., Ye, Y., Yin, J., Ying, C., Yu, J., Zha, C., Zhang, C., Zhang, H., Zhang, K., Zhang, Y., Zhao, H., Zhao, Y., Zhou, L., Lu, C.-Y., Peng, C.-Z., Zhu, X., Pan, J.-W.: Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Sci. Bull. 67(3), 240–245 (2022). https://doi.org/10.1016/j.scib.2021.10.017

    Article  Google Scholar 

  10. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)

    Article  ADS  Google Scholar 

  11. Vidal, G., Dawson, C.M.: Universal quantum circuit for two-qubit transformations with three controlled-not gates. Phys. Rev. A 69(1), 010301 (2004)

    Article  ADS  Google Scholar 

  12. Vatan, F., Williams, C.: Optimal quantum circuits for general two-qubit gates. Phys. Rev. A 69(3), 032315 (2004)

    Article  ADS  Google Scholar 

  13. Khaneja, N., Glaser, S.J.: Cartan decomposition of su (2n) and control of spin systems. Chem. Phys. 267(1–3), 11–23 (2001)

    Article  Google Scholar 

  14. Tucci, R.R.: An introduction to cartan’s kak decomposition for qc programmers. ar**v preprint ar**v:quant-ph/0507171 (2005)

  15. Vartiainen, J.J., Möttönen, M., Salomaa, M.M.: Efficient decomposition of quantum gates. Phys. Rev. Lett. 92(17), 177902 (2004)

    Article  ADS  Google Scholar 

  16. He, R.-H., Liu, H.-D., Wang, S.-B., Wu, J., Nie, S.-S., Wang, Z.-M.: Universal quantum state preparation via revised greedy algorithm. Quant. Sci. Technol. 6(4), 045021 (2021). https://doi.org/10.1088/2058-9565/ac1dfe

    Article  ADS  Google Scholar 

  17. Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Quantum circuits for general multiqubit gates. Phys. Rev. Lett. 93(13), 130502 (2004)

    Article  ADS  Google Scholar 

  18. Vatan, F., Williams, C.: Optimal quantum circuits for general two-qubit gates. Phys. Rev. A 69, 032315 (2004). https://doi.org/10.1103/PhysRevA.69.032315

    Article  ADS  Google Scholar 

  19. Zhang, Y.-H., Zheng, P.-L., Zhang, Y., Deng, D.-L.: Topological quantum compiling with reinforcement learning. Phys. Rev. Lett. 125(17), 170501 (2020)

    Article  ADS  Google Scholar 

  20. He, R.-H., Wang, R., Nie, S.-S., Wu, J., Zhang, J.-H., Wang, Z.-M.: Deep reinforcement learning for universal quantum state preparation via dynamic pulse control. EPJ Quant. Technol. 8(1), 29 (2021)

    Article  ADS  Google Scholar 

  21. Haug, T., Mok, W.-K., You, J.-B., Zhang, W., Png, C.E., Kwek, L.-C.: Classifying global state preparation via deep reinforcement learning. Mach. Learn. Sci. Technol. 2(1), 01–02 (2020). https://doi.org/10.1088/2632-2153/abc81f

    Article  Google Scholar 

  22. Zhang, X.-M., Wei, Z., Asad, R., Yang, X.-C., Wang, X.: When does reinforcement learning stand out in quantum control? A comparative study on state preparation. Quant. Inf. 5(1), 1–7 (2019)

  23. Yang, X.-C., Yung, M.-H., Wang, X.: Neural-network-designed pulse sequences for robust control of singlet-triplet qubits. Phys. Rev. A 97(4), 042324 (2018)

    Article  ADS  Google Scholar 

  24. Niu, M.Y., Boixo, S., Smelyanskiy, V.N., Neven, H.: Universal quantum control through deep reinforcement learning. Quant. Inf. 5(1), 1–8 (2019)

  25. Kliuchnikov, V., Maslov, D., Mosca, M.: Asymptotically optimal approximation of single qubit unitaries by clifford and t circuits using a constant number of ancillary qubits. Phys. Rev. Lett. 110(19), 190502 (2013)

    Article  ADS  Google Scholar 

  26. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly language. ar**v preprint ar**v:1707.03429 (2017)

  27. Chong, F.T., Franklin, D., Martonosi, M.: Programming languages and compiler design for realistic quantum hardware. Nature 549(7671), 180–187 (2017)

    Article  ADS  Google Scholar 

  28. Dawson, C.M., Nielsen, M.A.: The solovay-kitaev algorithm. ar**v preprint ar**v:quant-ph/0505030 (2005)

  29. Pham, T.T., Van Meter, R., Horsman, C.: Optimization of the solovay-kitaev algorithm. Phys. Rev. A 87(5), 052332 (2013)

    Article  ADS  Google Scholar 

  30. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  31. Krantz, P., Kjaergaard, M., Yan, F., Orlando, T.P., Gustavsson, S., Oliver, W.D.: A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6(2), 021318 (2019)

    Article  ADS  Google Scholar 

  32. Wilson, E., Mueller, F., Bassman, L., Iancu, C.: Empirical evaluation of circuit approximations on noisy quantum devices. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. SC ’21. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3458817.3476189

  33. Younis, E.: Bqskit-qfactor. https://github.com/bqskit/qfactor

  34. Motzoi, F., Gambetta, J.M., Rebentrost, P., Wilhelm, F.K.: Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett. 103, 110501 (2009). https://doi.org/10.1103/PhysRevLett.103.110501

    Article  ADS  Google Scholar 

  35. Gambetta, J.M., Motzoi, F., Merkel, S.T., Wilhelm, F.K.: Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Phys. Rev. A 83, 012308 (2011). https://doi.org/10.1103/PhysRevA.83.012308

    Article  ADS  Google Scholar 

  36. De, A.: Fast quantum control for weakly nonlinear qubits: On two-quadrature adiabatic gates. ar**v preprint ar**v:1509.07905 (2015)

  37. Motzoi, F., Wilhelm, F.K.: Improving frequency selection of driven pulses using derivative-based transition suppression. Phys. Rev. A 88, 062318 (2013). https://doi.org/10.1103/PhysRevA.88.062318

    Article  ADS  Google Scholar 

  38. McKay, D.C., Wood, C.J., Sheldon, S., Chow, J.M., Gambetta, J.M.: Efficient \(z\) gates for quantum computing. Phys. Rev. A 96, 022330 (2017). https://doi.org/10.1103/PhysRevA.96.022330

    Article  ADS  Google Scholar 

  39. Developer, M.: Mindquantum, version 0.6.0 (2021)

  40. Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2007). https://doi.org/10.1103/PhysRevA.76.042319

    Article  ADS  Google Scholar 

  41. Huang, H.-L., Wu, D., Fan, D., Zhu, X.: Superconducting quantum computing: a review. Sci. China Inf. Sci. 63(8), 1–32 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  42. Tinkham, M., Emery, V.: Introduction to superconductivity. Phys. Today 49(10), 74–74 (1996)

    Article  Google Scholar 

  43. J., A., Adedoyin, A., Ambrosiano, J., Anisimov, P., Casper, W., Chennupati, G., Coffrin, C., Djidjev, H., Gunter, D., Karra, S., Lemons, N., Lin, S., Malyzhenkov, A., Mascarenas, D., Mniszewski, S., Nadiga, B., O’malley, D., Oyen, D., Pakin, S., Prasad, L., Roberts, R., Romero, P., Santhi, N., Sinitsyn, N., Swart, P.J., Wendelberger, J.G., Yoon, B., Zamora, R., Zhu, W., Eidenbenz, S., Bärtschi, A., Coles, P.J., Vuffray, M., Lokhov, A.Y.: Quantum algorithm implementations for beginners. ACM Trans. Quant. Comput. 3(4), 1–92 (2022). https://doi.org/10.1145/3517340

  44. Gilchrist, A., Langford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71(6), 062310 (2005)

    Article  ADS  Google Scholar 

  45. An, Z., Zhou, D.L.: Deep reinforcement learning for quantum gate control. EPL (Europhysics Letters) 126(6), 60002 (2019). https://doi.org/10.1209/0295-5075/126/60002

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2021LLZ004), and Fundamental Research Funds for the Central Universities (Grant No. 202364008) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62002349). Run-Hong He would also like to thank **ang-Han Liang, Sheng-Bin Wang, Zhi-Min Wang, and Guo-Long Cui for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Ming Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, RH., Ren, FH., **e, YY. et al. Approximate quantum gates compilation for superconducting transmon qubits with self-navigation algorithm. Quantum Inf Process 22, 367 (2023). https://doi.org/10.1007/s11128-023-04125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04125-8

Keywords

Navigation