Log in

Dynamic full quantum one-way function based on quantum circuit map**

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum one-way function provides security for cryptographic protocols in quantum cryptography. Full quantum one-way function is a type of quantum one-way function that maps between quantum states and deals with pure quantum information. It was initially proposed by means of concatenating ‘quantum–classical’ and ‘classical–quantum’ quantum one-way functions. The first full quantum one-way function can be applied to quantum authentication, which uses quantum states to authenticate quantum states directly. However, the concatenation format restricts the implementation and cryptographic applications of this function. Considering the advantage of quantum circuit optimization in implementing quantum circuits to physical quantum devices, we propose a dynamic full quantum one-way function based on quantum circuit map**. Quantum circuit optimization intrinsically generates the remapped quantum circuit which maps between quantum states but does not destroy them. The dynamic process of quantum circuit map** contributes to the one-wayness of the dynamic full quantum one-way function. The experimental results show that this function is more realizable than the concatenated full quantum one-way function. The dynamic full quantum one-way function can be employed to construct a full quantum trapdoor one-way function which is ‘easy to compute and invert’ based on a trapdoor. Meanwhile, this new full quantum one-way function is proved to be very useful in quantum cryptography, especially in quantum currency notes. Our work promotes the development from full quantum one-way functions to future quantum cryptographic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Goldreich, O.: Strong one-way functions. In: Foundations of Cryptography, 2nd ed., vol. 2, , pp. 32–33. Cambridge University Press, New York (2004)

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999). https://doi.org/10.1137/S0036144598347011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Kashefi, E., Kerenidis, I.: Statistical zero knowledge and quantum one-way functions. Theor. Comput. Sci. 378, 101–116 (2005). https://doi.org/10.1016/j.tcs.2007.03.013

    Article  MathSciNet  MATH  Google Scholar 

  4. Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block ciphers: Davies–Meyer and Merkle–Damgård constructions. In: IACR Cryptology ePrint Archive, vol. 2018, p. 841 (2018). https://doi.org/10.1007/978-3-030-03326-2_10

  5. Ablayev, F., Vasiliev, A.: Cryptographic quantum hashing. Laser Phys. Lett. 11, 025202 (2014). https://doi.org/10.1088/1612-2011/11/2/025202

    Article  ADS  MATH  Google Scholar 

  6. Ablayev, F., Ablayev, M.: On the concept of cryptographic quantum hashing. Laser Phys. Lett. 12, 125204 (2015). https://doi.org/10.1088/1612-2011/12/12/125204

    Article  ADS  MATH  Google Scholar 

  7. Ablayev, F., Ablayev, M., Vasiliev, A., Ziatdinov, M.: Quantum fingerprinting and quantum hashing. Computational and cryptographical aspects. Balt. J. Mod. Comput. 4, 860–875 (2016). https://doi.org/10.22364/BJMC.2016.4.4.17

    Article  Google Scholar 

  8. Ablayev, F., Ablayev, M., Vasiliev, A.: On the balanced quantum hashing. J. Phys. Conf. Ser. 681, 012019 (2016). https://doi.org/10.1088/1742-6596/681/1/012019

    Article  MATH  Google Scholar 

  9. Buhrman, H., Cleve, R., Watrous, J., Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001). https://doi.org/10.1103/PhysRevLett.87.167902

    Article  ADS  Google Scholar 

  10. Gottesman, D., Chuang, I.: Quantum digital signatures (2001). ar**v.quant-ph/0105032. https://doi.org/10.48550/ar**v.quant-ph/0105032

  11. Behera, A., Paul, G.: Quantum to classical one-way function and its applications in quantum money authentication. Quantum Inf. Process. 17, 1–24 (2018). https://doi.org/10.1007/s11128-018-1965-z

    Article  MathSciNet  MATH  Google Scholar 

  12. Shang, T., Tang, Y., Chen, R., Liu, J.: Full quantum one-way function for quantum cryptography. Quantum Eng. 2, e32 (2020). https://doi.org/10.1002/que2.32

    Article  Google Scholar 

  13. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

    Article  Google Scholar 

  14. Li, G., Ding, Y., ** problem for NISQ-era quantum devices. In: Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’19), pp. 1001–1014. Association for Computing Machinery, New York (2019)

  15. Siraichi, M., Santos, V., Collange, C., Pereira, F.: Qubit allocation. In: Proceedings of the 2018 International Symposium on Code Generation and Optimization (CGO 2018), pp. 113–125. Association for Computing Machinery, New York (2018)

  16. Zulehner, A., Paler, A., Wille, R.: An efficient methodology for map** quantum circuits to the IBM QX architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38, 1226–36 (2019). https://doi.org/10.1109/TCAD.2018.2846658

    Article  Google Scholar 

  17. Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: On basing one-way functions on NP-hardness. In: Proceedings of the 38th Annual ACM Symposium on the Theory of Computing (STOC ’06), pp. 701–710. Association for Computing Machinery, New York (2006)

  18. Shang, T., Chen, R., Liu, J.: On the obfuscatability of quantum point functions. Quantum Inf. Process. 18, 55 (2019). https://doi.org/10.1007/s11128-019-2172-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Itoko, T., Raymond, R., Imamichi, T., Matsuo, A.: Optimization of quantum circuit map** using gate transformation and commutation. Integration 70, 43–50 (2020). https://doi.org/10.1016/j.vlsi.2019.10.004

    Article  Google Scholar 

  20. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983). https://doi.org/10.1145/1008908.1008920

    Article  MATH  Google Scholar 

  21. Aaronson, S., Farhi, E., Gosset, D., Hassidim, A., Kelner, J., Lutomirski, A.: Quantum money. Commun. ACM 55(8), 84–92 (2012). https://doi.org/10.1145/2240236.2240258

    Article  MATH  Google Scholar 

  22. Jogenfors, J.: Quantum bitcoin: an anonymous, distributed, and secure currency secured by the no-cloning theorem of quantum mechanics. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 245–52 (2019)

  23. Lutomirski, A., Aaronson, S., Farhi, E., Gosset, D., Hassidim, A., Kelner, J., Shor, P.: Breaking and making quantum money: toward a new quantum cryptographic protocol. In: Proceedings of Innovations in Computer Science (ICS), pp. 20–31. Institute for Computer Science, Bei**g (2010)

  24. Alagic, G., Fefferman, B.: On quantum obfuscation (2016). ar**v:1602.01771. https://doi.org/10.48550/ar**v.1602.01771

  25. Floyd, R.: Algorithms 97: shortest path. Commun. ACM 5, 345 (1962). https://doi.org/10.1145/367766.368168

    Article  Google Scholar 

  26. Zeng, G.H.: Reply to “Comment on ‘Arbitrated quantum-signature scheme’’’. Phys. Rev. A 78, 016301 (2008). https://doi.org/10.1103/PhysRevA.78.016301

    Article  ADS  MathSciNet  Google Scholar 

  27. García-Escartín, J., Chamorro-Posada, P.: swap test and Hong–Ou–Mandel effect are equivalent. Phys. Rev. A 87, 052330 (2013). https://doi.org/10.1103/PhysRevA.87.052330

    Article  ADS  Google Scholar 

  28. Fanizza, M., Rosati, M., Skotiniotis, M., Calsamiglia, J., Giovannetti, V.: Beyond the swap test: optimal estimation of quantum state overlap. Phys. Rev. A 124, 060503 (2020). https://doi.org/10.1103/PhysRevLett.124.060503

    Article  Google Scholar 

  29. Liu, W., Yin, H.: A quantum scheme of state overlap based on quantum mean estimation and support vector machine. Phys. A Stat. Mech. Appl. 606, 128117 (2022). https://doi.org/10.1016/j.physa.2022.128117

    Article  MathSciNet  MATH  Google Scholar 

  30. Cincio, L., Subaşl, Y., Sornborger, A.T., Coles, P.J.: Learning the quantum algorithm for state overlap. New J. Phys. 20, 113022 (2018). https://doi.org/10.1088/1367-2630/aae94a

    Article  ADS  Google Scholar 

  31. Tang, Y., Shang, T., Liu, J.: Universal construction of a full quantum one-way function. Quantum Inf. Process. 21, 258 (2022). https://doi.org/10.1007/s11128-022-03586-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Treinish, M., Gambetta, J., Nationand, P., et al.: Qiskit/qiskit: Qiskit 0.34.0 (0.34.0). Zenodo (2021)

  33. Bergou, J.A., Hillery, M., Saffman, M.: Decoherence and quantum error correction. In: Quantum Information Processing. Graduate Texts in Physics. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75436-5_9

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 61971021), the Key Research and Development Program of Hebei Province (No. 22340701D), and the Chinese Universities Industry-Education-Research Innovation Foundation of BII Education Grant Program (No. 2021BCA0200) for valuable helps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Shang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Shang, T. & Liu, J. Dynamic full quantum one-way function based on quantum circuit map**. Quantum Inf Process 22, 324 (2023). https://doi.org/10.1007/s11128-023-04065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04065-3

Keywords

Navigation