Log in

Mechanically controlled quantum memory efficiency and optical transistor

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We report the quantum memory efficiency and optical transistor action in a two-sided hybrid optomechanical cavity with a medium composed of three-level atoms inside it. We show that the hybrid system has higher controllable memory efficiency to store and retrieve information as a function of optomechanical coupling parameter. We control the efficiency of this system for different values of optomechanical parameters. Moreover, this system acts as an optical transistor that works on the principle of optomechanically induced transparency (OMIT). We achieve the control over transmission profile, simultaneously turning on and off the different coupling parameters involved in this system. We also present the contrast for transmission of light when control field turns on and off as an evidence of optical transistor action. The numerical results obtained are in complete agreement with analytical results based on presently available technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Kuhn, A., Hennrich, M., Rempe, G.: Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002)

    ADS  Google Scholar 

  2. McKeever, J., Boca, A., Boozer, A., Miller, R., Buck, J., Kuzmich, A., Kimble, H.: Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004)

    ADS  Google Scholar 

  3. Lvovsky, A., Sanders, B., Tittel, W.: Optical quantum memory. Nat. Photonics 3, 706–714 (2009)

    ADS  Google Scholar 

  4. Duan, L., Lukin, M., Cirac, J., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    ADS  Google Scholar 

  5. Wilk, T., Webster, S., Kuhn, A., Rempe, G.: Single-atom single-photon quantum interface. Science 317, 488–490 (2007)

    ADS  Google Scholar 

  6. Togan, E., Chu, Y., Trifonov, A., Jiang, L., Maze, J., Childress, L., Dutt, M., Sørensen, A., Hemmer, P., Zibrov, A., et al.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010)

    ADS  Google Scholar 

  7. Specht, H., Nölleke, C., Reiserer, A., Uphoff, M., Figueroa, E., Ritter, S., Rempe, G.: A single-atom quantum memory. Nature 473, 190–193 (2011)

    ADS  Google Scholar 

  8. Kozhekin, A., Mølmer, K., Polzik, E.: Quantum memory for light. Phys. Rev. A 62, 033809 (2000)

    ADS  Google Scholar 

  9. Choi, K., Deng, H., Laurat, J., Kimble, H.: Map** photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008)

    ADS  Google Scholar 

  10. Fleischhauer, M., Yelin, S., Lukin, M.: How to trap photons? Storing single-photon quantum states in collective atomic excitations. Opt. Commun. 179, 395–410 (2000)

    ADS  Google Scholar 

  11. Dey, T., Agarwal, G.: Storage and retrieval of light pulses at moderate powers. Phys. Rev. A 67, 033813 (2003)

    ADS  Google Scholar 

  12. Dilley, J., Nisbet-Jones, P., Shore, B., Kuhn, A.: Single-photon absorption in coupled atom-cavity systems. Phys. Rev. A 85, 023834 (2012)

    ADS  Google Scholar 

  13. Ma, L., Slattery, O., Tang, X.: Optical quantum memory based on electromagnetically induced transparency. J. Opt. 19, 043001 (2017)

    ADS  Google Scholar 

  14. Gorshkov, A., André, A., Lukin, M., Sørensen, A.: Photon storage in Lambda-type optically dense atomic media. I. Cavity model. Phys. Rev. A 76 (2007)

  15. Gorshkov, A., André, A., Lukin, M., Sørensen, A.: Photon storage in \(L\)ambda-type optically dense atomic media. II. Free-space model. Phys. Rev. A. 76, 033805 (2007)

    ADS  Google Scholar 

  16. Mücke, M., Figueroa, E., Bochmann, J., Hahn, C., Murr, K., Ritter, S., Villas-Boas, C., Rempe, G.: Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755–758 (2010)

    ADS  Google Scholar 

  17. Lukin, M., Fleischhauer, M., Scully, M., Velichansky, V.: Intracavity electromagnetically induced transparency. Opt. Lett. 23, 295–297 (1998)

    ADS  Google Scholar 

  18. Braje, D., Balić, V., Yin, G., Harris, S.: Low-light-level nonlinear optics with slow light. Phys. Rev. A 68, 041801 (2003)

    ADS  Google Scholar 

  19. Wu, Y., Yang, X.: EIT in V-, Lambda -, and cascade—type schemes beyond steady-state analysis. Phys. Rev. A 71 (2005)

  20. Yang, X., Yu, M., Kwong, D., Wong, C.: Coupled resonances in multiple silicon photonic crystal cavities in all-optical solid-state analogy to EIT. IEEE J. Sel. Top. Quantum Electron. 288–294 (2010)

  21. Bayrakli, I.: Electromagnetically induced transparency in natural and artificial molecules. Opt. Laser Technol. 141, 107168 (2021)

    Google Scholar 

  22. Huang, S., Tsang, M.: Electromagnetically induced transparency and optical memories in an optomechanical system with N membranes (2014)

  23. Zhang, H., Saif, F., Jiao, Y., **g, Hui: Loss-induced transparency in optomechanics. Opt. Express 26(19), 25199 (2018)

    ADS  Google Scholar 

  24. Parkins, S.: Single-atom transistor for light. Nature 465, 699–700 (2010)

    ADS  Google Scholar 

  25. Li, J., Zhu, K.: A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity. Nanotechnology 22, 055202 (2010)

    ADS  Google Scholar 

  26. Chen, W., Beck, K., Bücker, R., Gullans, M., Lukin, M., Tanji-Suzuki, H., Vuletić, V.: All-optical switch and transistor gated by one stored photon. Science 341, 768–770 (2013)

    ADS  Google Scholar 

  27. Tiarks, D., Baur, S., Schneider, K., Dürr, S., Rempe, G.: Single-photon transistor using a Förster resonance. Phys. Rev. Lett. 113, 053602 (2014)

    ADS  Google Scholar 

  28. Bermel, P., Rodriguez, A., Johnson, S., Joannopoulos, J., Soljačić, M.: Single-photon all-optical switching using waveguide-cavity quantum electrodynamics. Phys. Rev. A 74, 043818 (2006)

    ADS  Google Scholar 

  29. Kimble, H.: The quantum internet. Nature 453, 1023–1030 (2008)

    ADS  Google Scholar 

  30. Sangouard, N., Simon, C., De Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)

    ADS  Google Scholar 

  31. Sillanpää, M., Hakonen, P.: Hardware for a quantum network. Nature 507, 45–46 (2014)

    ADS  Google Scholar 

  32. Makino, K., Hashimoto, Y., Yoshikawa, J., Ohdan, H., Toyama, T., Loock, P., Furusawa, A.: Synchronization of optical photons for quantum information processing. Sci. Adv. 2, e1501772 (2016)

    ADS  Google Scholar 

  33. Pezze, L., Smerzi, A., Oberthaler, M., Schmied, R., Treutlein, P.: Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018)

    ADS  MathSciNet  Google Scholar 

  34. Shou, C., Zhang, Q., Luo, W., Huang, G.: Photon storage and routing in quantum dots with spin-orbit coupling. Opt. Express 29, 9772–9785 (2021)

    ADS  Google Scholar 

  35. Yamakoshi, T., Watanabe, S.: Dual-channel scattering problem in the cavity-like potential. Eur. J. Phys. 43, 035401 (2022)

    Google Scholar 

  36. Tsukanov, A.: Optomechanical systems and quantum computing. Russ. Microlectron. 40, 333–342 (2011)

    Google Scholar 

  37. Aspelmeyer, M., Kippenberg, T., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    ADS  Google Scholar 

  38. Dong, C., Wang, Y., Wang, H.: Optomechanical interfaces for hybrid quantum networks. Natl. Sci. Rev. 2, 510–519 (2015)

    Google Scholar 

  39. Lu, T., Jiao, Y., Zhang, H., Saif, F., **g, H.: Selective and switchable optical amplification with mechanical driven oscillators. Phys. Rev. A 100, 013813 (2019)

    ADS  Google Scholar 

  40. Kippenberg, T., Rokhsari, H., Carmon, T., Vahala, K.: Radiation-pressure induced mechanical oscillation of an optical microcavity. In: 2005 European Quantum Electronics Conference, pp. 106–106 (2005)

  41. Vitali, D., Gigan, S., Ferreira, A., Böhm, H., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    ADS  Google Scholar 

  42. Akram, M.J., Ghafoor, F., Saif, F.: Electromagnetically induced transparency and tunable Fano resonances in hybrid optomechanics. J. Phys. B At. Mol. Opt. Phys. 48, 065502 (2015)

    ADS  Google Scholar 

  43. Akram, M.J., Khan, M.M., Saif, F.: Tunable fast and slow light in a hybrid optomechanical system. Phys. Rev. A 92, 023846 (2015)

    ADS  Google Scholar 

  44. Yasir, K., Liu, W.: Controlled electromagnetically induced transparency and Fano resonances in hybrid BEC-optomechanics. Sci. Rep. 6, 1–11 (2016)

    Google Scholar 

  45. Ghafoor, F., Akram, M.J., Ayaz, M., Kokab, H., Saif, F.: Atom-assisted coherent control of multiple-color mechanically induced switching. J. Phys. B At. Mol. Opt. Phys. 55, 205402 (2022)

    ADS  Google Scholar 

  46. Akram, M.J., Ghafoor, F., Saif, F.: Multiple electromagnetically induced transparency, slow and fast light in hybrid optomechanics. Quantum Physics. ar**v:1512.07297 (2015)

  47. Meystre, P.: A short walk through quantum optomechanics. Ann. Phys. 525, 215–233 (2013)

    MATH  Google Scholar 

  48. Akram, M.J., Ghafoor, F., Khan, M., Saif, F.: Control of Fano resonances and slow light using Bose–Einstein condensates in a nanocavity. Phys. Rev. A 95, 023810 (2017)

    ADS  Google Scholar 

  49. Genes, C., Vitali, D., Tombesi, P.: Emergence of atom-light-mirror entanglement inside an optical cavity. Phys. Rev. A 77, 050307 (2008)

    ADS  Google Scholar 

  50. Gardiner, C., Zoller, P., Zoller, P.: Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer Science and Business Media (2004)

  51. Qu, K., Agarwal, G.: Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems. Phys. Rev. A 87, 031802 (2013)

    ADS  Google Scholar 

  52. Law, C., Kimble, H.: Deterministic generation of a bit-stream of single-photon pulses. J. Mod. Opt. 44, 2067–2074 (1997)

    ADS  Google Scholar 

  53. Li, Y., **ao, M.: Electromagnetically induced transparency in a three-level Lambda-type system in rubidium atoms. Phys. Rev. A 51, R2703 (1995)

    ADS  Google Scholar 

  54. Oliveira, R., Borges, H., Souza, J., Villas-Boas, C.: Quantum memory and optical transistor based on electromagnetically induced transparency in optical cavities (2016)

  55. Ghasemi, M., Tavassoly, M.: Quantum repeater protocol using an arrangement of QED-optomechanical hybrid systems. JOSA B 36, 2669–2677 (2019)

    ADS  Google Scholar 

  56. Li, M., Chen, A.: Enhanced entanglement in hybrid cavity mediated by a two-way coupled quantum dot. Open Phys. 18, 14–23 (2020)

    ADS  Google Scholar 

  57. Tang, J., Cai, Q., Cheng, Z., Xu, N., Peng, G., Chen, P., Wang, D., **a, Z., Wang, Y., Song, H., et al.: A perspective on quantum entanglement in optomechanical systems. Phys. Lett. A 127966 (2022)

  58. Heo, J., Hong, C., Kang, M., Yang, H., Yang, H., Hong, J., Choi, S.: Implementation of controlled quantum teleportation with an arbitrator for secure quantum channels via quantum dots inside optical cavities. Sci. Rep. 7, 1–12 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors H.K. and F.S. acknowledge HEC for financial support under indigenous scholarship program, PIN:520-164739-2PS6-84, and NRPU #16427, respectively. F.S. is on leave from department of Electronics, Quaid-i-Azam University. F.S. thanks JSPS for the financial support conducive for this research under JSPS Invitational Fellowship Long-Term Program 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhan Saif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokab, H., Siddiqui, I.A., A. Awan, Z. et al. Mechanically controlled quantum memory efficiency and optical transistor. Quantum Inf Process 22, 88 (2023). https://doi.org/10.1007/s11128-022-03818-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03818-w

Keywords

Navigation