Log in

Multiparty anonymous quantum communication without multipartite entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It is a fundamental cryptographic capability to establish multipartite anonymous entanglement among multiple parties in future quantum networks, which can be then exploited for further multiparty communication tasks such as conference key agreement, secret sharing or else. Here, we present a practical approach to create multiparty anonymous entanglement without multipartite entanglement. It exploits a measurement-device-independent architecture and naturally removes all detector side channels. We prove its security and compare its performance with the approach based on multipartite Greenberger–Horne–Zeilinger (GHZ) entanglement over certain types of noisy channels. It paves a way for practical multiparty anonymous quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. Christandl, M., Wehner, S.: Quantum anonymous transmissions. In Advances in Cryptology-ASIACRYPT 2005, edited by B. Roy (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), pp. 217–235.

  2. Greenberger, D. M., Horne, M. A., and Zeilinger, A.: In Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos (Kluwer Academic, Dordrecht, 1989), pp. 69–72.

  3. Brassard, G., Broadbent, A., Fitzsimons, J., Gambs, S., and Tapp, A.: Anonymous quantum communication. In Advances in Cryptology-ASIACRYPT 2007, edited by K. Kurosawa (Springer Berlin Heidelberg, Berlin, Heidelberg, 2007), pp. 460–473.

  4. Unnikrishnan, A., MacFarlane, Ian J., Yi, R., et al.: Anonymity for practical quantum networks. Phys. Rev. Lett. 122, 240501 (2019)

    ADS  Google Scholar 

  5. Pappa, A., Chailloux, A., Wehner, S., et al.: Multipartite entanglement verification resistant against dishonest parties. Phys. Rev. Lett. 108, 260502 (2012)

    ADS  Google Scholar 

  6. McCutcheon, W., Pappa, A., Bell, B.A., et al.: Experimental verification of multipartite entanglement in quantum networks. Nat. Commun. 7, 13251 (2016)

    ADS  Google Scholar 

  7. Yang, Y.-G., Yang, Y.-L., Lv, X.-L., et al.: Examining the correctness of anonymity for practical quantum networks. Phys. Rev. A 101, 062311 (2020)

    ADS  Google Scholar 

  8. Lipinska, V., Murta, G., Wehner, S.: Anonymous transmission in a noisy quantum network using the W state. Phys. Rev. A 98, 052320 (2018)

    ADS  Google Scholar 

  9. Yang, W., Huang, L., Song, F.: Privacy preserving quantum anonymous transmission via entanglement relay. Sci. Rep. 6, 26762 (2016)

    ADS  Google Scholar 

  10. Hahn, F., de Jong, J., Pappa, A.: Anonymous quantum conference key agreement. PRX Quantum 1, 020325 (2020)

    Google Scholar 

  11. Proietti, M., Ho, J., Grasselli, F., et al.: Experimental quantum conference key agreement. Sci. Adv. 7, 0395 (2021)

    ADS  Google Scholar 

  12. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838–1840 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    ADS  Google Scholar 

  14. Broadbent, A., Tapp, A.: Information-theoretic security without an honest majority. In: Advances in Cryptology-ASIACRYPT 2007, edited by K. Kurosawa, LNCS, Vol. 4833 (Springer, Berlin, Heidelberg, 2007), pp. 410–426.

  15. Gao, Z.-K., Li, T., Li, Z.-H.: Deterministic measurement-device-independent quantum secret sharing. Sci. Chin. Phys. Mech. Astron. 63, 120311 (2020)

    ADS  Google Scholar 

  16. Li, T., Miranowicz, A., **a, K., et al.: Resource-efficient analyzer of Bell and Greenberger-Horne-Zeilinger states of multiphoton systems. Phys. Rev. A 100, 052302 (2019)

    ADS  Google Scholar 

  17. Pan, J.-W., Zeilinger, A.: Greenberger-Horne-Zeilinger-state analyzer. Phys. Rev. A 57, 2208–2211 (1998)

    ADS  MathSciNet  Google Scholar 

  18. **a, Y., Chen, Q.-Q., Song, J., Song, H.-S.: Efficient hyperentangled Greenberger-Horne-Zeilinger states analysis with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 1029–1037 (2012)

    ADS  Google Scholar 

  19. Watrous, J.: The theory of quantum information. Cambridge University Press, UK (2018)

    MATH  Google Scholar 

  20. Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swap** using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)

    ADS  Google Scholar 

  21. Cao, C., Zhang, L., Han, Y.H., et al.: Complete and faithful hyperentangled-Bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate. Opt. Express 28(3), 2857–2872 (2020)

    ADS  Google Scholar 

  22. Han, Y.-H., Cao, C., Fan, L., et al.: Heralded high-fidelity quantum hyper-CNOT gates assisted by charged quantum dots inside single-sided optical microcavities. J. Opt. Soc. Am. B 38(5), 1593–1603 (2021)

    ADS  Google Scholar 

  23. Gillett, G.G., Dalton, R.B., Lanyon, B.P., et al.: Experimental feedback control of quantum systems using weak measurements. Phys. Rev. Lett. 104, 080503 (2010)

    ADS  Google Scholar 

  24. Cao, C., Wang, C., He, L.-Y., et al.: Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt. Express 21(4), 4093–4105 (2013)

    ADS  Google Scholar 

  25. Cao, C., Fan, L., Chen, X., et al.: Efficient entanglement concentration of arbitrary unknown less-entangled three-atom W states via photonic Faraday rotation in cavity QED. Quantum Inf. Process. 16, 98 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Cao, C., Chen, X., Duan, Y., et al.: Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements. Sci. China Phys. Mech. Astron. 59, 100315 (2016)

    Google Scholar 

  27. Yin, P.P., Cao, C., Han, Y.H., et al.: Faithful quantum entanglement purification and concentration using heralded high-fidelity parity-check detectors based on quantum-dot-microcavity systems. Quantum Inf. Process. 21(1), 17 (2022)

    ADS  MathSciNet  Google Scholar 

  28. Yang, Y.-G., Liu, X.-X., Gao, S., et al.: Towards practical anonymous quantum communication: A measurement-device-independent approach. Phys. Rev. A 104, 052415 (2021)

    ADS  MathSciNet  Google Scholar 

  29. Cao, C., Duan, Y.W., Chen, X., et al.: Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Express 25(15), 16931–16946 (2017)

    ADS  Google Scholar 

  30. Cao, C., Han, Y.H., Yi, X., et al.: Implementation of a single-photon fully quantum router with cavity QED and linear optics. Opt. Quant. Electron. 53(1), 32 (2021)

    Google Scholar 

  31. Yi, X., Cao, C., Fan, L., et al.: Quantum secure multi-party summation protocol based on blind matrix and quantum Fourier transform. Quantum Inf. Process. 20(7), 249 (2021)

    ADS  MathSciNet  Google Scholar 

  32. Yang, Y.-G., Gao, S., Li, D., et al.: New secure quantum dialogue protocols over collective noisy channels. Int. J. Theor. Phys. 58(9), 2810–2822 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Yang, Y.-G., Dong, J.-R., Yang, Y.-L., et al.: High-capacity measurement-device-independent deterministic secure quantum communication. Quantum Inf. Process. 20(6), 203 (2021)

    ADS  MathSciNet  Google Scholar 

  34. Yang, Y.-G., Wen, Q.-Y.: Threshold quantum secure direct communication without entanglement. Sci. Chin. Ser. G Phys. Astron. 51(2), 176–183 (2008)

    MATH  Google Scholar 

  35. Yang, Y.-G., Teng, Y.-W., Chai, H.-P., et al.: Revisiting the security of secure direct communication based on **-pong protocol [Quantum Inf. Process. 8, 347 (2009)]. Quantum Inf. Process. 10(3), 317–323 (2011)

  36. Yang, Y.-G., Chai, H.-P., Teng, Y.-W., et al.: Improving the security of controlled quantum secure direct communication by using four particle cluster states against an attack with fake entangled particles. Int. J. Theor. Phys. 50, 395–400 (2011)

    MATH  Google Scholar 

  37. Yang, Y.-G., Lv, X.-L., Gao, S., et al.: Detector-device-independent quantum key agreement based on single-photon Bell state measurement. Int. J. Theor. Phys. 61, 50 (2022)

    MathSciNet  MATH  Google Scholar 

  38. Yang, Y.-G., Li, B.-R., Li, D., et al.: New quantum key agreement protocols based on Bell states. Quantum Inf. Process. 18(10), 322 (2019)

    ADS  MathSciNet  Google Scholar 

  39. Yang, Y.-G., Gao, S., Li, D., et al.: Two-party quantum key agreement over a collective noisy channel. Quantum Inf. Process. 18(3), 74 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Yang, Y.-G., Li, B.-R., Kang, S.-Y., et al.: New quantum key agreement protocols based on cluster states. Quantum Inf. Process. 18(2), 77 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Yang, Y.-G., Wang, Y.-C., Li, J., et al.: Semi-device-independent quantum key agreement protocol. Quantum Inf. Process. 20(11), 376 (2021)

    ADS  MathSciNet  Google Scholar 

  42. Cao, W.-F., Yang, Y.-G., Zhou, Y.-H., et al.: New quantum key agreement protocol with five-qubit Brown states. Mod. Phys. Lett. A 34(40), 1950332 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Yang, Y.-G., Liu, X.-X., Gao, S., et al.: Detector-device-independent quantum secret sharing based on hyper-encoding and single-photon Bell-state measurement. Quantum Eng. 3, e76 (2021)

    Google Scholar 

  44. Yang, Y.-G., Wang, Y.-C., Yang, Y.-L., et al.: Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol. Sci. Chin. Phys. Mech. Astron. 64(6), 121–124 (2021)

    Google Scholar 

  45. Yang, Y.-G., Liu, X.-X., Gao, S., et al.: A stronger participant attack on the measurement-device-independent protocol for deterministic quantum secret sharing. Quantum Inf. Process. 20, 223 (2021)

    ADS  MathSciNet  Google Scholar 

  46. Yang, Y.-G., Wang, Y., Chai, H.-P., et al.: Member expansion in quantum (t, n) threshold secret sharing schemes. Opt. Commun. 284(13), 3479–3482 (2011)

    ADS  Google Scholar 

  47. Yang, Y.-G., Wang, Y., Teng, Y.-W., et al.: Universal three-party quantum secret sharing against collective noise. Commun. Theor. Phys. 55(4), 589–593 (2011)

    ADS  MATH  Google Scholar 

  48. Yang, Y.-G., Chai, H.-P., Wang, Y., et al.: Fault tolerant quantum secret sharing against collective-amplitude-dam** noise. Sci. Chin. Ser. G Phys. Astron. 54(9), 1619–1624 (2011)

    ADS  Google Scholar 

  49. Yang, Y.-G., Teng, Y.-W., Chai, H.-P., et al.: Verifiable quantum (k, n)-threshold secret key sharing. Int. J. Theor. Phys. 50(3), 792–798 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Yang, Y.-G., Teng, Y.-W., Chai, H.-P., et al.: Fault tolerant quantum secret sharing against collective noise. Phys. Scr. 83(2), 025003 (2011)

    ADS  MATH  Google Scholar 

  51. Yang, Y.-G., Wen, Q.-Y.: Comment on: "Efficient high-capacity quantum secret sharing with two-photon entanglement". Phys. Lett. A 373(3), 396–398 (2009)

    ADS  MATH  Google Scholar 

  52. Yang, Y.-G., Jia, X., Wang, H.Y., et al.: Verifiable quantum (k, n)-threshold secret sharing. Quantum Inf. Process. 11, 1619–1625 (2012)

    ADS  MathSciNet  Google Scholar 

  53. Yang, Y.-G., Gao, S., Li, D., et al.: Three-party quantum secret sharing against collective noise. Quantum Inf. Process. 18(5), 215 (2019)

    ADS  MathSciNet  Google Scholar 

  54. Cao, W.-F., Yang, Y.-G.: Verifiable quantum secret sharing protocols based on four-qubit entangled states. Int. J. Theor. Phys. 58(4), 1202–1214 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Yang, Y.-G., Wen, Q.-Y.: Threshold multiparty quantum-information splitting via quantum channel encryption. Int. J. Quantum Inf. 7(6), 1249–1254 (2009)

    MATH  Google Scholar 

  56. Yang, Y.-G., Wen, Q.-Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Yang, Y.-G., Cao, W.-F., Wen, Q.-Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    ADS  MATH  Google Scholar 

  58. Yang, Y.-G., Liu, Z.-C., Li, J., et al.: Theoretically extensible quantum digital signature with starlike cluster states. Quantum Inf. Process. 16(1), 1–15 (2017)

    MATH  Google Scholar 

  59. Yang, Y.-G., Lei, H., Liu, Z.-C., et al.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  60. Yang, Y.-G., Zhou, Z., Teng, Y.-W., et al.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D 61(3), 773–778 (2011)

    ADS  Google Scholar 

  61. Yang, Y.-G., Wen, Q.-Y.: Arbitrated quantum signature of classical messages against collective amplitude dam** noise. Opt. Commun. 283(16), 3198–3201 (2010)

    ADS  Google Scholar 

  62. Yang, Y.-G., Wang, Y., Wen, Q.-Y.: Scalable arbitrated quantum signature of classical messages with multi-signers. Commun. Theor. Phys. (Bei**g, China) 54(1), 84–88 (2010)

  63. Yang, Y.-G., Wen, Q.-Y.: Economical multiparty simultaneous quantum identity authentication based on Greenberger-Horne-Zeilinger states. Chin. Phys. B 18(8), 3233–3236 (2009)

    ADS  Google Scholar 

  64. Yang, Y.-G., Guo, X.-P., Xu, G., et al.: Reducing the communication complexity of quantum private database queries by subtle classical post-processing with relaxed quantum ability. Comput. Secur. 81, 15–24 (2019)

    Google Scholar 

  65. Yang, Y.-G., Liu, Z.-C., Li, J., et al.: Robust QKD-based private database queries based on alternative sequences of single-qubit measurements. Sci. Chin. Ser. G Phys. Astron. 60(12), 120311 (2017)

    ADS  Google Scholar 

  66. Yang, Y.-G., Liu, Z.-C., Li, J., et al.: Quantum private query with perfect user privacy against a joint-measurement attack. Phys. Lett. A 380(48), 4033–4038 (2016)

    ADS  MATH  Google Scholar 

  67. Yang, Y.-G., Liu, Z.-C., Chen, X.-B., et al: Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Inf. Process. 15(9), 3833–3840 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  68. Yang, Y.-G., Sun, S.-J., Xu, P., et al.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13, 805–813 (2014)

    ADS  MathSciNet  Google Scholar 

  69. Yang, Y.-G., Yang, R., Cao, W.-F., et al.: Flexible quantum oblivious transfer. Int. J. Theor. Phys. 56(4), 1286–1297 (2017)

    MATH  Google Scholar 

  70. Yang, Y.-G., Sun, S.-J., Pan, Q.-X., et al.: Quantum oblivious transfer based on unambiguous set discrimination. Optik 126(23), 3838–3843 (2015)

    ADS  Google Scholar 

  71. Gao, S., Pan, S.J., Yang, Y.G.: Quantum algorithm for kernelized correlation filter. Sci. Chin. Inf. Sci. (2022). https://doi.org/10.1007/s11432-021-3400-3

    Article  Google Scholar 

  72. Yang, Y.-L., Yang, Y.-G., Zhou, Y.-H., et al.: Measurement-device-independent quantum wireless network communication. Quantum Inf. Process. 21, 154 (2022)

    ADS  MathSciNet  Google Scholar 

  73. Yang, Y.-G., Cao, S.-N., Cao, W.-F., et al.: Generalized teleportation by means of discrete-time quantum walks on N-lines and N-cycles. Mod. Phys. Lett. B 33(06), 1950070 (2019)

    ADS  MathSciNet  Google Scholar 

  74. Cao, W.-F., Yang, Y.-G., Li, D., et al.: Quantum state transfer on unsymmetrical graphs via discrete-time quantum walk. Mod. Phys. Lett. A 34(38), 1950317 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  75. Yang, Y.-G., Yang, J.-J., Zhou, Y.-H., et al.: Quantum network communication: A discrete-time quantum-walk approach. Sci. Chin. Inf. Sci. 61, 042501 (2018)

    MathSciNet  Google Scholar 

  76. Yang, Y.-L., Yang, Y.-G., Zhou, Y.-H., et al.: Efficient quantum multi-hop communication based on Greenberger-Horne-Zeilinger states and Bell states. Quantum Inf. Process. 20, 189 (2021)

    ADS  MathSciNet  Google Scholar 

  77. Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. Process. 20, 128 (2021)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province (Grant No. SKLACSS-202104); the National Natural Science Foundation of China (Grant Nos. 62071015, 62171264).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YG., Cao, GD., Huang, RC. et al. Multiparty anonymous quantum communication without multipartite entanglement. Quantum Inf Process 21, 196 (2022). https://doi.org/10.1007/s11128-022-03534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03534-5

Keywords

Navigation