Log in

A quantum voting protocol using single-particle states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on the single-particle states, we propose a novel quantum voting protocol which can select multiple winners from candidates. In this protocol, the voting intentions of voters can be expressed through unitary operation, the voter’s ID information is contained in the ballot, and each ballot is encrypted. In addition, legitimate vote can neither be forged by malicious attackers nor be denied by voters. Considering the influence of the number of candidates and voters on the preparation of quantum states, we propose corresponding grou** strategies, respectively, to reduce the level of d-level single-particle states and the number of quantum states. Security analysis shows that our proposed protocol can resist different types of malicious attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–90 (1981)

    Article  Google Scholar 

  2. Jan, J.K., Tai, C.C.: A secure electronic voting protocol with IC cards. J. Syst. Softw. 39(2), 93–101 (1997)

    Article  Google Scholar 

  3. Ku, W.C., Wang, S.D.: A secure and practical electronic voting scheme. Comput. Commun. 22(3), 279–286 (1999)

    Article  Google Scholar 

  4. Tian, J.H., Zhang, J.Z., Li, Y.P.: A quantum multi-proxy blind signature scheme based on genuine four-qubit Entangled state. Int. J. Theor. Phys. 55(2), 1–8 (2016)

    Article  MathSciNet  Google Scholar 

  5. Shao, A.X., Zhang, J.Z., **e, S.C.: A quantum multi-proxy multi-blind-signature scheme based on genuine six-qubit Entangled state. Int. J. Theor. Phys. 55(12), 5216–5224 (2016)

    Article  Google Scholar 

  6. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. Siam Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. Grover, L.K.: Quantum mechanics helps in searching for a needle in a Haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  ADS  Google Scholar 

  8. Grover, L.K.: A fast quantum mechanical algorithm for database search. Phys. Rev. Lett. 79, 212–219 (1997)

    MATH  Google Scholar 

  9. Britt, B.C.: Modeling viral diffusion using quantum computational network simulation. Quant. Eng. 2(1), 29 (2020)

    Google Scholar 

  10. Shi, Y.P.: A brief introduction to quantum computing and quantum information(I). Math. Model. Appl. 7(2), 1–10 (2018)

    Google Scholar 

  11. Shi, Y.P.: A brief introduction to quantum computing and quantum information(II). Math. Model. Appl. 7(3), 1–11 (2018)

    Google Scholar 

  12. Hillery, M.: Quantum voting and privacy ptotection: first steps. Int. Soc. Opt. Eng. 2006, 1598 (2006)

    Google Scholar 

  13. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)

    Article  ADS  Google Scholar 

  14. Bonanome, M., Buzek, V., Hillery, M., Ziman, M.: Toward protocols for quantum-ensured privacy and secure voting. Phys. Rev. A 84(2), 290–296 (2011)

    Article  Google Scholar 

  15. Horoshko, D., Kilin, S.: Quantum anonymous voting with anonymity check. Phys. Lett. A 375, 1172–1175 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. Niu, X.F., Zhang, J.Z., **e, S.C., Chen, B.Q.: An improved quantum voting scheme. Int. J. Theor. Phys. 57, 3200–3206 (2018)

    Article  Google Scholar 

  17. Wang, S.L., Zhang, S., Wang, Q., Shi, R.H.: Fault-tolerant quantum anonymous voting protocol. Int. J. Theor. Phys. 58, 1008–1016 (2019)

    Article  Google Scholar 

  18. Zhang, X., Zhang, J.Z., **e, S.C.: A secure quantum voting scheme based on quantum group blind signature. Int. J. Theor. Phys. 59, 719–729 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. Zhou, B.M., Zhang, K.J., Zhang, X., Wang, Q.L.: The cryptanalysis and improvement of a particular quantum voting model. Int. J. Theor. Phys. 59, 1109–1120 (2020)

    Article  MathSciNet  Google Scholar 

  20. Xu, Y.Z., Huang, Y.F., Lu, W., Li, L.Z.: A Quantum Electronic Voting Scheme with d-Level Single Particles. In: Intelligent Computing Methodologies. ICIC. Lecture Notes in Computer Science. pp. 710–715 (2018)

  21. Jiang, D.H., Wang, J., Liang, X.Q., Xu, G.B., Qi, H.F.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59, 436–444 (2020)

    Article  MathSciNet  Google Scholar 

  22. Lin, S., Guo, G.D., Huang, F., Liu, X.F.: Quantum anonymous ranking based on the Chinese remainder theorem. Phys. Rev. A. 93(1), 012318 (2016)

    Article  ADS  Google Scholar 

  23. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  24. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  25. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  26. Sun, Z., Qi, R.Y., Lin, Z.H. et al.: Design and implementation of a practical quantum secure direct communication system. In: 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi National Exhibition Centre (2018)

  27. Bennett, C.H., Brassard, G.: Public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Ban-galore, India, pp. 175–179 (1984)

  28. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  30. Zhang, W., Ding, D.S., Sheng, Y.B., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    Article  ADS  Google Scholar 

  31. Pu, Y.F., Jiang, N., Chang, W., et al.: Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells. Nat. Commun. 8, 15359 (2017)

    Article  ADS  Google Scholar 

  32. Qi, R.Y., Sun, Z., Lin, Z.S., et al.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8(1), 22 (2019)

    Article  ADS  Google Scholar 

  33. Sun, Z., Song, L.Y., Huang, Q., et al.: Towards practical quantum secure direct communication: a quantum-memory-free protocol and code design. IEEE Trans. Commun. 68(9), 5778–5792 (2020)

    Article  Google Scholar 

  34. Pan, D., Li, K.R., Ruan, D., et al.: Single-photon-memory two-step quantum secure direct communication relying on Einstein-Podolsky-Rosen pairs. IEEE Access. 8, 121146–121161 (2020)

    Article  Google Scholar 

  35. Djordjevic, I.B., Milenkovic, O., Vasic, B.: Generalized low-density parity-check codes for optical communication systems. Lightw. Technol. 23(5), 1939–1946 (2005)

    Article  Google Scholar 

  36. Yue, G., **, L., Wang, X.: Generalized low-density parity-check codes based on Hadamard constraints. IEEE Trans. Inf. Theory 53(3), 1058–1079 (2007)

    Article  MathSciNet  Google Scholar 

  37. Li, Q., Qu, X., Yin, L., Lu, J.: Generalized low-density parity-check coding scheme with partial-band jamming. Tsinghua Sci. Technol. 19(2), 203–210 (2014)

    Article  MathSciNet  Google Scholar 

  38. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China. Phys. Mech. 56(9), 1670–1678 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Shandong Provincial Natural Science Foundation (No. ZR2019MF023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ang-Qian Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YR., Jiang, DH., Zhang, YH. et al. A quantum voting protocol using single-particle states. Quantum Inf Process 20, 110 (2021). https://doi.org/10.1007/s11128-021-03048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03048-6

Keywords

Navigation