Log in

Discrete-time quantum walk search on Johnson graphs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Johnson graph J (n, k) is defined by n symbols, where vertices are k-element subsets of the symbols, and vertices are adjacent if they differ in exactly one symbol. In particular, both J (n, 1), the complete graph Kn, and J (n, 2), the strongly regular triangular graph Tn, support fast quantum spatial search. Wong showed that continuous-time quantum walk search on J (n, 3) also supports fast search. The problem is reconsidered in the language of scattering quantum walk, a type of discrete-time quantum walk. Here the search space is confined to a low-dimensional subspace corresponding to the collapsed graph. Using matrix perturbation theory, we show that discrete-time quantum walk search on J (n, 3) also achieves full quantum speedup. The analytical method can also be applied to general Johnson graphs J (n, k) with fixed k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Childs, A.M., Gosset, D., Webb, Z.: Universal computation by multiparticle quantum walk. Science 339(6121), 791–794 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  3. Lovett, N.B., Cooper, S., Everitt, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. Dheeraj, M.N., Brun, T.A.: Continuous limit of discrete quantum walks. Phys. Rev. A 91, 6 (2015)

    Google Scholar 

  5. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  6. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of 16th ACM-SIAM SODA, pp. 1099–1108 (2005)

  7. Reitzner, D., Hillery, M., Feldman, E.: Quantum searches on highly symmetric graphs. Phys. Rev. A 79, 012323 (2009)

    Article  ADS  Google Scholar 

  8. Hillery, M., Reitzner, D., Bužek, V.: Searching via walking: how to find a marked clique of a complete graph using quantum walks. Phys. Rev. A 81, 062324 (2010)

    Article  ADS  Google Scholar 

  9. Janmark, J., Meyer, D.A., Wong, T.G.: Global symmetry is unnecessary for fast quantum search. Phys. Rev. Lett. 112, 210502 (2014)

    Article  ADS  Google Scholar 

  10. Reitzner, D., Nagaj, D., Buzek, V.: Quantum walks. Acta Phys. Slovaca 61, 6 (2011)

    Article  Google Scholar 

  11. Babai, L.: Graph isomorphism in quasipolynomial time. ar**v:1512.03547 (2015)

  12. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)

    Article  MathSciNet  Google Scholar 

  13. Cao, W.F., Zhang, Y.C., Yang, Y.G., et al.: Constructing quantum Hash functions based on quantum walks on Johnson graphs. Quantum Inf. Process. 17(7), 156 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Wong, T.G.: Quantum walk search on Johnson graphs. J. Phys. A Math. Theor. 49(19), 195303 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Bose, R.L.R.C.: A characterization of tetrahedral graphs. J. Comb. Theory 3, 366–385 (1967)

    Article  MathSciNet  Google Scholar 

  16. Xue, X.L., Liu, Z.H., Chen, H.W.: Search algorithm on strongly regular graphs based on scattering quantum walk. Chin. Phys. B 1, 108–114 (2017)

    Google Scholar 

  17. Cottrell, S.S.: Finding structural anomalies in star graphs using quantum walks: a general approach. J. Phys. A Math. Theor. 48, 035304 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  19. Hillery, M., Zheng, H., Feldman, E., et al.: Quantum walks as a probe of structural anomalies in graphs. Phys. Rev. A 85(6), 062325 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61802002, 61502101) and the Natural Science Foundation of Anhui Province, China (Grant No. 1708085MF162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **-ling Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Xl., Ruan, Y. & Liu, Zh. Discrete-time quantum walk search on Johnson graphs. Quantum Inf Process 18, 50 (2019). https://doi.org/10.1007/s11128-018-2158-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2158-5

Keywords

Navigation