Log in

Structurally flexible macro-organization of the pigment–protein complexes of the diatom Phaeodactylum tricornutum

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

By means of circular dichroism (CD) spectroscopy, we have characterized the organization of the photosynthetic complexes of the diatom Phaeodactylum tricornutum at different levels of structural complexity: in intact cells, isolated thylakoid membranes and purified fucoxanthin chlorophyll protein (FCP) complexes. We found that the CD spectrum of whole cells was dominated by a large band at (+)698 nm, accompanied by a long tail from differential scattering, features typical for psi-type (polymerization or salt-induced) CD. The CD spectrum additionally contained intense (−)679 nm, (+)445 nm and (−)470 nm bands, which were also present in isolated thylakoid membranes and FCPs. While the latter two bands were evidently produced by excitonic interactions, the nature of the (−)679 nm band remained unclear. Electrochromic absorbance changes also revealed the existence of a CD-silent long-wavelength (∼545 nm) absorbing fucoxanthin molecule with very high sensitivity to the transmembrane electrical field. In intact cells the main CD band at (+)698 nm appeared to be associated with the multilamellar organization of the thylakoid membranes. It was sensitive to the osmotic pressure and was selectively diminished at elevated temperatures and was capable of undergoing light-induced reversible changes. In isolated thylakoid membranes, the psi-type CD band, which was lost during the isolation procedure, could be partially restored by addition of Mg-ions, along with the maximum quantum yield and the non-photochemical quenching of singlet excited chlorophyll a, measured by fluorescence transients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

Chl a :

Chlorophyll a

Chl c :

Chlorophyll c

DDE:

Diadinoxanthin-deepoxidase

Ddx:

Diadinoxanthin

DM:

n-Dodecyl-β-d-maltoside

Dtx:

Diatoxanthin

FCP:

Fucoxanthin-chlorophyll a/c binding protein

Fx:

Fucoxanthin

LD:

Linear dichroism

LHC:

Light-harvesting complex

NPQ:

Non-photochemical chlorophyll fluorescence quenching

PAM:

Pulse amplitude modulated chlorophyll fluorometer

PAR:

Photosynthetically active radiation

PSI:

Photosystem I

PSII:

Photosystem II

psi-type:

Polymerization or salt-induced

References

  • Akimoto S, Yamazaki I, Murakami A, Takaichi S, Mimuro M (2004) Ultrafast excitation relaxation dynamics and energy transfer in the siphonaxanthin-containing green alga Codium fragile. Chem Phys Lett 390:45–49

    Article  CAS  Google Scholar 

  • Akimoto S, Tomo T, Naitoh Y, Otomo A, Murakami A, Mimuro M (2007) Identification of a new excited state responsible for the in vivo unique absorbtion band of siphonaxanthin in the green alga Codium fragile. J Phys Chem B 111:9179–9181

    Article  PubMed  CAS  Google Scholar 

  • Barzda V, Mustárdy L, Garab G (1994) Size dependency of circular-dichroism in macroaggregates of photosynthetic pigment–protein complexes. Biochemistry 33:10837–10841

    Article  PubMed  CAS  Google Scholar 

  • Barzda V, Istokovics A, Simidjiev I, Garab G (1996) Structural flexibility of chiral macroaggregates of light-harvesting chlorophyll a/b pigment–protein complexes. Light-induced reversible structural changes associated with energy dissipation. Biochemistry 35:8981–8985

    Article  PubMed  CAS  Google Scholar 

  • Berkaloff C, Caron L, Rousseau B (1990) Subunit organization of PS I particles from brown algae and diatoms: polypeptide and pigment analysis. Photosynth Res 23:181–193

    Article  CAS  Google Scholar 

  • Bilger W, Björkmann O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  Google Scholar 

  • Büchel C (2003) Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42:13027–13034

    Article  PubMed  CAS  Google Scholar 

  • Büchel C, Garab G (1995) Electrochromic absorbance changes in the chlorophyll-c-containing alga Pleurochloris meiringensis (Xanthophyceae). Photosynt Res 43:49–56

    Article  Google Scholar 

  • Büchel C, Garab G (1997) Organization of the pigment molecules in the chlorophyll a/c light-harvesting complex of Pleurochloris meiringensis (Xanthophyceae). Characterization with circular dichroism and absorbance spectroscopy. J Photochem Photobiol B 37:118–124

    Article  Google Scholar 

  • Büchel C, Wilhelm C, Hauswirth N, Wild A (1992) Evidence for a lateral heterogeneity by patch-work like areas enrichted with photosystem I complexes in three thylakoid lamellae of Pleurochloris meiringensis (Xanthophyceae). Crypt Bot 2:375–386

    Google Scholar 

  • Chow WS, Kim EH, Horton P, Anderson JM (2005) Granal stacking of thylakoid membranes in higher plant chloroplasts: the physicochemical forces at work and the functional consequences that ensue. Photochem Photobiol Sci 4:1081–1090

    Article  PubMed  CAS  Google Scholar 

  • Cseh Z, Rajagopal S, Tsonev T, Busheva M, Papp E, Garab G (2000) Thermooptic effect in chloroplast thylakoid membranes. Thermal and light stability of pigment arrays with different levels of structural complexity. Biochemistry 39:15250–15257

    Article  PubMed  CAS  Google Scholar 

  • Cseh Z, Vianelli A, Rajagopal S, Krumova S, Kovács L, Papp E, Barzda V, Jennings R, Garab G (2005) Thermo-optically induced reorganizations in the main light harvesting antenna of plants. I. Non-arrhenius type of temperature dependence and linear light-intensity dependencies. Photosynth Res 86:263–273

    Article  PubMed  CAS  Google Scholar 

  • de Grooth BG, van Gorkom HJ, Meiburg RF (1980) Electrochromic absorbance changes in spinach chloroplasts induced by an external electrical field. Biochim Biophys Acta 589:299–314

    Article  PubMed  Google Scholar 

  • Durnford DG, Aebersold R, Green BR (1996) The fucoxanthin-chlorophyll proteins from a chromophyte alga are part of a large multigene family: structural and evolutionary relationships to other light harvesting antennae. Mol Gen Genet 253:377–386

    Article  PubMed  CAS  Google Scholar 

  • Eppard M, Rhiel E (1998) The genes encoding light-harvesting subunits of Cyclotella cryptica (Bacillariophyceae) constitute a complex and heterogeneous family. Mol Gen Genet 260:335–345

    Article  PubMed  CAS  Google Scholar 

  • Faludi-Dániel A, Demeter S, Garay AS (1973) Circular dichroism spectra of granal and agranal chloroplasts of maize. Plant Physiol 52:54–56

    PubMed  Google Scholar 

  • Garab G (1996) Linear and circular dichroism. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis, advances in photosynthesis, vol 3. Kluwer Academic Publishers, Dordrecht, pp 11–40

    Chapter  Google Scholar 

  • Garab G, Kieleczawa J, Sutherland JC, Bustamante C, Hind G (1991) Organization of pigment protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll-b-less mutant of barley as revealed by circular-dichroism. Photochem Photobiol 54:273–281

    CAS  Google Scholar 

  • Gibbs S (1962) The ultrastructure of the chloroplasts of algae. J Ultrastruct Res 7:418–435

    Article  PubMed  CAS  Google Scholar 

  • Gillbro T, Andersson PO, Liu RSH, Asato AE, Takaishi S, Cogdell RJ (1993) Location of the carotenoid 2A(G)-state and its role in photosynthesis. Photochem Photobiol 57:44–48

    CAS  Google Scholar 

  • Goss R, Wilhelm C, Garab G (2000) Organization of the pigment molecules in the chlorophyll a/b/c-containing alga Mantoniella squamata (Prasinophyceae) studied by means of absorption, circular and linear dichroism spectroscopy. Biochem Biophys Acta 1457:190–199

    Article  PubMed  CAS  Google Scholar 

  • Grossman A (1990) Light-harvesting proteins of diatoms: their relationship to the chlorophyll a/b binding proteins of higher plants and their mode of transport into plastids. Mol Gen Genet 224:91–100

    Article  PubMed  CAS  Google Scholar 

  • Hiller RG, Breton J (1992) A linear dichroism study of photosynthetic pigment organization in two fucoxanthin-containing algae. Biochim Biophys Acta 1102:365–370

    Article  CAS  Google Scholar 

  • Istokovics A, Simidjiev I, Lajkó F, Garab G (1997) Characterization of the light induced reversible changes in the chiral macroorganization of the chromophores in chloroplast thylakoid membranes. Temperature dependence and effect of inhibitors. Photosynth Res 54:45–53

    Article  CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1, c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  • Joliot P, Joliot A (1989) Characterization of linear and quadratic electrochromic probes in Chlorella sorokiniana and Chlamydomonas reinhardtii. Biochim Biophys Acta 975:355–360

    Article  CAS  Google Scholar 

  • Kakitani T, Honig B, Crofts AR (1982) Theoretical studies of the electrochromic response of carotenoids in photosynthetic membranes. Biophys J 39:57–63

    PubMed  CAS  Google Scholar 

  • Katoh T (1992) S1 state of fucoxanthin involved in energy transfer to chlorophyll a in the light-harvesting proteins of brown algae. In: Murata N (ed) Research in photosynthesis. Proceedings of the IXth international congress on photosynthesis, Nagoya, Japan, September 1992, vol 1. Kluwer Academic Publishers, Dordrecht, p 227

  • Keller D, Bustamante C (1986) Theory of the interaction of light with large inhomogeneous molecular aggregates. 2. Psi-type circular-dichroism. J Chem Phys 84:2972–2980

    Article  CAS  Google Scholar 

  • Lepetit B, Volke D, Szabó M, Hoffmann R, Garab G, Wilhelm C, Goss R (2007) Spectroscopic and molecular characterization of the oligomeric antenna of the diatom Phaeodactylum tricornutum. Biochemistry 46:9813–9822

    Article  PubMed  CAS  Google Scholar 

  • Lohr M, Wilhelm C (2001) Xanthophyll synthesis in diatoms: quantification of putative intermediates and comparison of pigment conversion kinetics with rate constants derived from a model. Planta 212:382–391

    Article  PubMed  CAS  Google Scholar 

  • Martinson TA, Ikeuchi M, Plumey FG (1998) Oxygen evolving diatom thylakoid membranes. Biochim Biophys Acta 1409:72–83

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Katoh T, Kawai H (1990) Spatial arrangement of pigments and their interaction in the fucoxanthin-chlorophyll a/c protein assembly (FCPA) isolated from the brown alga Dictyota dichotoma—analysis by means of polarized spectroscopy. Biochem Biophys Acta 1015:450–456

    Article  CAS  Google Scholar 

  • Noctor G, Ruban AV, Horton P (1993) Modulation of ΔpH dependent non-photochemical quenching of chlorophyll fluorescence in spinach chloroplasts. Biochim Biophys Acta 1183:339–344

    Article  CAS  Google Scholar 

  • Owens TG (1986a) Light-harvesting function in the diatom Phaeodactylum tricornutum, I: isolation and characterization of pigment–protein complexes. Plant Physiol 80:732–738

    Article  PubMed  CAS  Google Scholar 

  • Owens TG (1986b) Light-harvesting function in the diatom Phaeodactylum tricornutum, II: distribution of excitation energy between the photosystems. Plant Physiol 80:739–746

    PubMed  CAS  Google Scholar 

  • Palacios MA, Caffarri S, Bassi R, van Grondelle R, van Amerongen H (2004) Stark effect measurements on monomers and trimers of reconstituted light-harvesting complex II of plants. Biochim Biophys Acta 1656:177–188

    Article  PubMed  CAS  Google Scholar 

  • Papagiannakis E, van Stokkum I, Fey H, Büchel C, van Grondelle R (2005) Spectroscopic characterisation of the excitation energy transfer in the fucoxanthin-chlorophyll proteins of diatoms. Photosynth Res 86:241–250

    Article  PubMed  CAS  Google Scholar 

  • Provasoli L, McLaughin JJA, Droop MR (1957) The development of artificial media for marine algae. Arch Microbiol 25:392–428

    CAS  Google Scholar 

  • Pyszniak AM, Gibbs SP (1992) Immunochemical localization of photosystem-I and the fucoxanthin-chlorophyll-a/c light-harvesting complex in the diatom Phaeodactylum tricornutum. Protoplasma 166:208–217

    Article  CAS  Google Scholar 

  • Rees D, Horton P (1990) The mechanism of changes in photosystem II efficiency in spinach thylakoids. Biochim Biophys Acta 1016:219–227

    Article  CAS  Google Scholar 

  • Sewe KV, Reich R (1977) Effect of molecular polarization on electrochromism of carotenoids. 2. Lutein–chlorophyll complexes—origin of field-indicating absorption change at 520 nm in membranes of photosynthesis. Z Naturforsch C 32:161–171

    Google Scholar 

  • Telfer A, Nicolson J, Barber J (1976) Cation control of chloroplast structure and chlorophyll a fluorescence yield and its relevance to the intact chloroplast. FEBS Lett 65:77–83

    Article  CAS  Google Scholar 

  • Wilhelm C, Büchel C, Fisahn J, Goss R, Jakob T, Kroth P, LaRoche J, Lavaud J, Lohr M, Riebesell U, Stehfest K, Valentin K (2006) The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist 157:91–124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Mamoru Mimuro for critical reading of the manuscript, to Prof. Kornél Kovács (Biotechnology Department, University of Szeged, Hungary) for the use of their French pressure cell system and to Balázs Bálint for technical help. This work was supported by grants MC-RTN-CT 2003-505069 (INTRO2), OTKA K63252 and T42696 and by DAAD-MÖB project (9/2006-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Győző Garab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabó, M., Lepetit, B., Goss, R. et al. Structurally flexible macro-organization of the pigment–protein complexes of the diatom Phaeodactylum tricornutum . Photosynth Res 95, 237–245 (2008). https://doi.org/10.1007/s11120-007-9252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9252-3

Keywords

Navigation