Log in

Medium-resolution multispectral satellite imagery in precision agriculture: map** precision canola (Brassica napus L.) yield using Sentinel-2 time series

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Remote sensing imagery has been a key data source for precision agriculture. However, high-resolution and/or hyperspectral imagery have typically been favored for their greater information content. This study aims to demonstrate the capability of medium-resolution imagery in precision agriculture by develo** an example of canola yield map** using Sentinel-2 data in central Alberta. Two simple empirical models for map** precision canola yield are tested: one using random forest regression and a second using functional linear regression. Both take as input freely-available Sentinel-2 time series images and use these to predict precision yield gathered by a yield monitor. The models were able to predict crop yield to within 12–16% accuracy of the reference yield. These results also demonstrate that a time series of medium-resolution multispectral imagery can capture small-scale variation in crop yields. The proposed methods can be applied to other areas or crop** systems to improve understanding of crop growth at both the field-level and regional-level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acar-Denizli, N., Delicado, P., Başarır, G., & Caballero, I. (2018). Functional regression on remote sensing data in oceanography. Environmental and Ecological Statistics, 25(2), 277–304.

    Article  Google Scholar 

  • Bala, S. K., & Islam, A. S. (2009). Correlation between potato yield and MODIS-derived vegetation indices. International Journal of Remote Sensing, 30(10), 2491–2507.

    Article  Google Scholar 

  • Bauer, M. E., Hixson, M. M., Davis, B. J., & Etheridge, J. B. (1978). Area estimation of crops by digital analysis of Landsat data. Photogrammetric Engineering and Remote Sensing, 44(8), 1033–1043.

    Google Scholar 

  • Braga, P., Crusiol, L. G. T., Nanni, M. R., Caranhato, A. L. H., Fuhrmann, M. B., Nepomuceno, A. L., & Mertz-Henning, L. M. (2020). Vegetation indices and NIR-SWIR spectral bands as a phenoty** tool for water status determination in soybean. Precision Agriculture, 1–18.

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 151, 61–69.

  • Courault, D., Hossard, L., Demarez, V., Dechatre, H., Irfan, K., Baghdadi, N., & Ruget, F. (2021). STICS crop model and Sentinel-2 images for monitoring rice growth and yield in the Camargue region. Agronomy for Sustainable Development, 41(4), 1–17.

    Article  Google Scholar 

  • Delegido, J., Verrelst, J., Meza, C. M., Rivera, J. P., Alonso, L., & Moreno, J. (2013). A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. European Journal of Agronomy, 46, 42–52.

    Article  Google Scholar 

  • Doraiswamy, P. C., Hatfield, J. L., Jackson, T. J., Akhmedov, B., Prueger, J., & Stern, A. (2004). Crop condition and yield simulations using Landsat and MODIS. Remote Sensing of Environment, 92(4), 548–559.

    Article  Google Scholar 

  • Febrero Bande, M., & Oviedo de la Fuente, M. (2012). Statistical computing in functional data analysis: The R package fda.usc. Journal of Statistical Software, 51(4), 1–28.

  • Fernandez-Beltran, R., Baidar, T., Kang, J., & Pla, F. (2021). Rice-yield prediction with multi-temporal Sentinel-2 data and 3D CNN: A case study in Nepal. Remote Sensing, 13(7), 1391.

    Article  Google Scholar 

  • Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.

    Article  Google Scholar 

  • Ge, Y., Thomasson, J. A., & Sui, R. (2011). Remote sensing of soil properties in precision agriculture: A review. Frontiers of Earth Science, 5(3), 229–238.

    Google Scholar 

  • Gómez, D., Salvador, P., Sanz, J., & Casanova, J. L. (2019). Potato yield prediction using machine learning techniques and sentinel 2 data. Remote Sensing, 11(15), 1745.

    Article  Google Scholar 

  • Herrmann, I., Karnieli, A., Bonfil, D. J., Cohen, Y., & Alchanatis, V. (2010). SWIR-based spectral indices for assessing nitrogen content in potato fields. International Journal of Remote Sensing, 31(19), 5127–5143.

    Article  Google Scholar 

  • Huete, A. R., Liu, H. Q., Batchily, K. V., & Van Leeuwen, W. J. D. A. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3), 440–451.

    Article  Google Scholar 

  • Hunt, M. L., Blackburn, G. A., Carrasco, L., Redhead, J. W., & Rowland, C. S. (2019). High resolution wheat yield map** using Sentinel-2. Remote Sensing of Environment, 233, 111410.

    Article  Google Scholar 

  • Jeong, J. H., Resop, J. P., Mueller, N. D., Fleisher, D. H., Yun, K., Butler, E. E., & Kim, S. H. (2016). Random forests for global and regional crop yield predictions. PLoS ONE, 11(6), e0156571.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karlson, M., Ostwald, M., Bayala, J., Bazié, H. R., Ouedraogo, A. S., Soro, B., Sanou, J., & Reese, H. (2020). The potential of Sentinel-2 for crop production estimation in a smallholder agroforestry landscape, Burkina Faso. Frontiers in Environmental Science, 8, 85.

  • Kayad, A., Sozzi, M., Gatto, S., Marinello, F., & Pirotti, F. (2019). Monitoring within-field variability of corn yield using Sentinel-2 and machine learning techniques. Remote Sensing, 11(23), 2873.

    Article  Google Scholar 

  • Kern, A., Barcza, Z., Marjanović, H., Árendás, T., Fodor, N., Bónis, P., & Lichtenberger, J. (2018). Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices. Agricultural and Forest Meteorology, 260, 300–320.

    Article  Google Scholar 

  • Khabbazan, S., Vermunt, P., Steele-Dunne, S., Ratering Arntz, L., Marinetti, C., van der Valk, D., & van der Sande, C. (2019). Crop monitoring using Sentinel-1 data: A case study from The Netherlands. Remote Sensing, 11(16), 1887.

    Article  Google Scholar 

  • Kokoszka, P., & Reimherr, M. (2017). Introduction to functional data analysis. CRC Press.

    Book  Google Scholar 

  • Liaghat, S., & Balasundram, S. K. (2010). A review: The role of remote sensing in precision agriculture. American Journal of Agricultural and Biological Sciences, 5(1), 50–55.

    Article  Google Scholar 

  • Liang, L., Di, L., Huang, T., Wang, J., Lin, L., Wang, L., & Yang, M. (2018). Estimation of leaf nitrogen content in wheat using new hyperspectral indices and a random forest regression algorithm. Remote Sensing, 10(12), 1940.

    Article  Google Scholar 

  • Liu, J., Miller, J. R., Haboudane, D. & Pattey, E. (2004). Exploring the Relationship between Red Edge Parameters and Crop Variables for Precision Agriculture. In Proc. of IEEE International Geoscience and Remote Sensing Symposium (IGARRS), Fairbanks, Alaska, USA, (pp. 1276–1279).

  • Liu, J., Pattey, E., Miller, J. R., McNairn, H., Smith, A., & Hu, B. (2010). Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remote Sensing of Environment, 114(6), 1167–1177.

    Article  Google Scholar 

  • Mehdaoui, R., & Anane, M. (2020). Exploitation of the red-edge bands of Sentinel 2 to improve the estimation of durum wheat yield in Grombalia region (Northeastern Tunisia). International Journal of Remote Sensing, 41(23), 8986–9008.

    Article  Google Scholar 

  • Mkhabela, M. S., Bullock, P., Raj, S., Wang, S., & Yang, Y. (2011). Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agricultural and Forest Meteorology, 151(3), 385–393.

    Article  Google Scholar 

  • Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering, 114(4), 358–371.

    Article  Google Scholar 

  • Nguyen, L. H., Joshi, D. R., Clay, D. E., & Henebry, G. M. (2020). Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier. Remote Sensing of Environment, 238, 111017.

    Article  Google Scholar 

  • Novelli, F., Spiegel, H., Sandén, T., & Vuolo, F. (2019). Assimilation of sentinel-2 leaf area index data into a physically-based crop growth model for yield estimation. Agronomy, 9(5), 255.

    Article  Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., & Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825–2830.

    Google Scholar 

  • Prasad, A. K., Chai, L., Singh, R. P., & Kafatos, M. (2006). Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation, 8(1), 26–33.

    Article  Google Scholar 

  • Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis (2nd ed.). Springer.

    Book  Google Scholar 

  • Rudorff, B. F. T., & Batista, G. T. (1991). Wheat yield estimation at the farm level using TM Landsat and agrometeorological data. International Journal of Remote Sensing, 12, 2477–2484.

    Article  Google Scholar 

  • Sakamoto, T. (2020). Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 160, 208–228.

    Article  Google Scholar 

  • Salmon, J. M., Friedl, M. A., Frolking, S., Wisser, D., & Douglas, E. M. (2015). Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data. International Journal of Applied Earth Observation and Geoinformation, 38, 321–334.

    Article  Google Scholar 

  • Schimmelpfennig, D. (2016). Farm profits and adoption of precision agriculture. United States Department of Agriculture, Economic Research Service. ERR-217.

  • Segarra, J., González-Torralba, J., Aranjuelo, Í., Araus, J. L., & Kefauver, S. C. (2020). Estimating wheat grain yield using Sentinel-2 imagery and exploring topographic features and rainfall effects on wheat performance in Navarre, Spain. Remote Sensing, 12(14), 2278.

    Article  Google Scholar 

  • Setiyono, T., Nelson, A., & Holecz, F. (2014). Remote sensing based crop yield monitoring and forecasting. Crop monitoring for improved food security.

  • Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12(19), 3136.

    Article  Google Scholar 

  • Skakun, S., Franch, B., Vermote, E., Roger, J. C., Justice, C., Masek, J., & Murphy, E. (2018). Winter wheat yield assessment using Landsat 8 and Sentinel-2 data. In IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 5964–5967). IEEE.

  • Skakun, S., Kalecinski, N. I., Brown, M. G., Johnson, D. M., Vermote, E. F., Roger, J. C., & Franch, B. (2021). Assessing within-field corn and soybean yield variability from WorldView-3, planet, Sentinel-2, and landsat 8 satellite imagery. Remote Sensing, 13(5), 872.

    Article  Google Scholar 

  • Steele, D. (2017). Analysis of precision agriculture adoption & barriers in Western Canada. Retrieved 15 August 2020.

  • Thenkabail, P. S. (2003). Biophysical and yield information for precision farming from near-real-time and historical Landsat TM images. International Journal of Remote Sensing, 24(14), 2879–2904.

  • Thorp, K. R., & Tian, L. F. (2004). A review on remote sensing of weeds in agriculture. Precision Agriculture, 5(5), 477–508.

    Article  Google Scholar 

  • Wang, J., Dai, Q., Shang, J., **, X., Sun, Q., Zhou, G., & Dai, Q. (2019). Field-scale rice yield estimation using Sentinel-1A Synthetic Aperture Radar (SAR) data in coastal saline region of Jiangsu Province, China. Remote Sensing, 11(19), 2274.

    Article  Google Scholar 

  • Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402.

    Article  Google Scholar 

  • Yu, Q., Tian, Y. Q., Chen, R. F., Liu, A., Gardner, G. B., & Zhu, W. (2010). Functional linear analysis of in situ hyperspectral data for assessing CDOM in rivers. Photogrammetric Engineering & Remote Sensing, 76(10), 1147–1158.

    Article  Google Scholar 

  • Zhao, K., Popescu, S., & Nelson, R. (2009). Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers. Remote Sensing of Environment, 113(1), 182–196.

    Article  Google Scholar 

  • Zhuo, W., Huang, J., Li, L., Zhang, X., Ma, H., Gao, X., & **ao, X. (2019). Assimilating soil moisture retrieved from Sentinel-1 and Sentinel-2 data into WOFOST model to improve winter wheat yield estimation. Remote Sensing, 11(13), 1618.

    Article  Google Scholar 

  • Zhou, X., Zhu, X., Dong, Z., & Guo, W. (2016). Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal, 4(3), 212–219.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been made possible by Alberta Canola Producers Commission, Manitoba Canola Growers Association, and Eyes High Postdoctoral Research Program at University of Calgary. We thank the producer who provided us with the precision canola yield dataset and valuable insight into the underlying field-level patterns of yield. We elect not to name them to maintain confidentiality. We also thank Laurel Thompson at Lakeland College in Vermillion, Alberta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan H. Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

NDVI time series filtering

At any particular location (pixel), let X be a vector containing n values of days-of-year (DOYs) and Y be a vector containing n values of the GEE-retrieved NDVI observed at DOYs in X.

Rule 1 If a large change in NDVI is detected within a searching window of 14 days, a pixel is considered as cloud contaminated.

Let ∆Y be an n x n matrix containing distances between a particular Y value and all values in the Y vector (∆Yi = yi—Y with i indicates a value position in X, Y vectors and a row position in ∆Y). At a random position j, ∆Yj is split into two part: ∆Yj1—distances between yj and Y values to the left of j (start → j), and ∆Yj2—distances between yj and Y values to the right of j position in Y (j → end).

If min(∆Yj1) < − 0.1 & min(∆Yj2) < − 0.1 & (min(∆Yj1) + min(∆Yj2)) < − 0.3, the NDVI observation at j is considered as cloud contaminated.

Rule 2 If a very large change in NDVI is detected between three consecutive valid observations (no matter how far they are from each other in terms of DOY), a pixel is considered as cloud contaminated.

Let x1, x2, x3 be three consecutive DOYs with GEE-filtered NDVI observations—y1, y2, y3.

If (y1−y2) ≥ 0.15 & (y2−y3) ≤ − 0.15 & (y1 + y3) ≥ 0.35, NDVI at x2 is considered as cloud contaminated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, L.H., Robinson, S. & Galpern, P. Medium-resolution multispectral satellite imagery in precision agriculture: map** precision canola (Brassica napus L.) yield using Sentinel-2 time series. Precision Agric 23, 1051–1071 (2022). https://doi.org/10.1007/s11119-022-09874-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-022-09874-7

Keywords

Navigation