Log in

Bôcher’s Theorem with Rough Coefficients

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

A classical theorem of Bôcher says a positive harmonic function on a punctured domain \(\mathcal {O}\setminus p\) in Euclidean space can be written as the sum of a constant multiple of the Green function with pole at p and a function harmonic on all of \(\mathcal {O}\). Here we establish such a result in the setting of functions on a Riemannian manifold with rather rough metric tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axler, S., Bourdon, P., Ramey, W.: Bôcher’s theorem, Amer. Math. Monthly 99, 51–55 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Springer-Verlag, New York (1992)

    Book  Google Scholar 

  3. Bôcher, M.: Singular points of functions which satisfy partial differential equations of the elliptic type. Bull. AMS 9, 455–465 (1903)

    Article  MathSciNet  Google Scholar 

  4. Calderón, A.P.: Algebras of singular integral operators. AMS Proc. Symp. Pure Math. X, 10 pp 18–55 (1967)

  5. Choe, B.R.: Bôcher’s theorem for \({\mathscr{M}}\)-harmonic functions. Houston J. Math. 18, 539–549 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Eidel’man, S., Pletneva, T.: Bôcher’s theorem for positive solutions of elliptic equations of arbitrary order. Mat. Isled. 8, 173–177 (1973). (In Russian)

    MATH  Google Scholar 

  7. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, Springer, New York 1977 (2nd ed. (1983)

  8. Grüter, M., Widman, K.-O.: The Green function for uniformly elliptic equations. Manuscripta Math. 37, 303–342 (1982)

    Article  MathSciNet  Google Scholar 

  9. Helms, L.: Introduction to Potential Theory. Wiley-Interscience, New York (1969)

    MATH  Google Scholar 

  10. Kondrat’ev, V., Eidel’man, S.: Positive solutions of linear partial differential equations. Trudy Moskov Math. Obsc. 31, 85–146 (1974)

    MathSciNet  MATH  Google Scholar 

  11. Ligocka, E.: Elementary proofs of the Liouville and bôcher theorems for polyharmonic functions. Annale Polonici Math. 68, 257–265 (1998)

    Article  MathSciNet  Google Scholar 

  12. Marschall, J.: Pseudo-differential operators with coefficients in Sobolev spaces. Trans AMS 307, 335–361 (1988)

    MATH  Google Scholar 

  13. Marschall, J.: Parametrices for nonregular pseudodifferential operators. Math. Nachr. 159, 175–188 (1992)

    Article  MathSciNet  Google Scholar 

  14. Mitrea, M., Taylor, M.: Potential theory on Lipschitz domains in Riemannian manifolds: hölder continuous metric tensors. Commun PDE 25, 1487–1536 (2000)

    Article  Google Scholar 

  15. Mitrea, M., Taylor, M.: Potential theory on Lipschitz domains in Riemannian manifolds: the case of Dini metric tensors. Trans AMS 355, 1961–1985 (2003)

    Article  MathSciNet  Google Scholar 

  16. Taylor, M.: Partial Differential Equations, Vols. 1–3, Springer-Verlag, New York 1996 (2nd ed. (2011)

  17. Taylor, M.: Pseudodifferential Operators and Nonlinear PDE, Birkhauser boston (1991)

  18. Taylor, M.: Tools for PDE – Pseudodifferential operators, Paradifferential operators, and Layer potentials, Amer. Math. Soc. Providence RI (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Taylor.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Work partially supported by NSF grant DMS-1500817.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, M. Bôcher’s Theorem with Rough Coefficients. Potential Anal 56, 65–86 (2022). https://doi.org/10.1007/s11118-020-09876-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-020-09876-y

Keywords

Mathematics Subject Classification (2010)

Navigation