Log in

Effects of soil fauna on leaf litter decomposition and nutrient release during a two-year field experiment in a poplar plantation

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Soil fauna play a key role in the litter decomposition process in two ways; directly via fragmentation and consumption of the litter, and indirectly through changes in soil structure and the activity of microorganisms. The study aimed at better understanding how soil fauna affects the release of nutrients from litter.

Methods

We conducted a litter decomposition experiment using litterbags of three mesh sizes (0.01 mm, 1 mm, and 4 mm), and chemical treatments (no naphthalene; naphthalene application) to assess soil fauna effect on nutrient release in a poplar plantation in eastern China over a two-year period from Jan 2019 to Dec 2020.

Results

We found that the contribution of soil fauna to the mass loss of poplar leaf litter was 29% over the two-year period, and the contribution was more pronounced within the first four months. Soil macrofauna and meso-/micro- fauna contributed similarly to leaf litter mass loss, while microbial decomposition contributed the most to the decomposition process. The presence of soil fauna significantly promoted the degradation of cellulose and lignin, and accelerated the release of nitrogen at later stages of decomposition. A structural equation model revealed that higher soil fauna abundance not only promoted the litter decay rate directly, but also indirectly through modifying nitrogen and lignin contents.

Conclusions

Our results highlight the importance of soil fauna on cellulose and lignin degradation, and the importance of including this when simulating decomposition models for obtaining a better mechanistic understanding of forest litter decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets analysed in this study are available from the corresponding author on reasonable request.

References

  • Araujo PI, Yahdjian L, Austin AT (2012) Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina? Oecologia 168:221–230

    Article  PubMed  Google Scholar 

  • Aubert M, Margerie P, Trap J, Bureau F (2010) Aboveground-belowground relationships in temperate forests: plant litter composes and microbiota orchestrates. For Ecol Manag 259:563–572

    Article  Google Scholar 

  • Bakker MA, Carreño-Rocabado G, Poorter L (2011) Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Funct Ecol 25:473–483

    Article  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Beguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  CAS  PubMed  Google Scholar 

  • Berg B (2014) Decomposition patterns for foliar litter - a theory for influencing factors. Soil Biol Biochem 78:222–232

    Article  CAS  Google Scholar 

  • Berg B, Laskowski R (2005) Litter decomposition: a guide to carbon and nutrient turnover. Advances in Ecological Research. Elsevier, The Netherlands, pp 19–71

    Google Scholar 

  • Berg B, Mcclaugherty C (2014) Plant Litter: Decomposition, Humus Formation, Carbon Sequestration, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Bradford AM, Tordoff GM, Eggers T, Jones TH, Newington JE (2002) Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 99:317–323

    Article  Google Scholar 

  • Brandt LA, King JY, Hobbie SE, Milchunas DG, Sinsabaugh RL (2010) The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosystems 13(5):765–781

    Article  CAS  Google Scholar 

  • Chen HY, Brant HAN, Seedre M, Brassard BW, Taylor AR (2017) The contribution of litterfall to net primary production during secondary succession in the boreal forest. Ecosystems 20:830–844

    Article  Google Scholar 

  • Coq S, Souquet JM, Meudec E, Cheynier V, Hättenschwiler S (2010) Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of french Guiana. Ecology 91:2080–2091

    Article  PubMed  Google Scholar 

  • Cotrufo MF, Soong J, Vandegehuchte ML, Nguyen T, Denef K, Shaw EA, Sylvain ZA, de Tomasel CM, Nielsen UN, Wall DH (2014) Naphthalene addition to soil. Surfaces: a feasible method to reduce soil micro-arthropods with negligible direct effects on soil C dynamics. Appl Soil Ecol 74:21–29

    Article  Google Scholar 

  • David JF (2014) The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol Biochem 76:109–118

    Article  CAS  Google Scholar 

  • Fang S-Z (2008) Silviculture of poplar plantation in China: a review. Chin J Appl Ecol 19:2308–2316 (in Chinese)

    Google Scholar 

  • Feng H, Guo J, Ma X, Han M, Kneeshaw D, Sun H, Malghani S, Chen H, Wang W (2021) Methane emissions may be driven by hydrogenotrophic methanogens inhabiting the stem tissues of poplar. New Phytol 233:182–193

    Article  PubMed  Google Scholar 

  • Feng HL, Guo JH, Wang WF, Song XZ, Yu SQ (2019) Soil depth determines the composition and diversity of bacterial and archaeal communities in a poplar plantation. Forests 10(7):550

    Article  CAS  Google Scholar 

  • Fioretto A, Di Nardo C, Papa S, Fuggi A (2005) Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biol Biochem 37:1083–1091

    Article  CAS  Google Scholar 

  • Frouz J (2018) Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332:161–172

    Article  CAS  Google Scholar 

  • Frouz J, Roubíčková A, Heděnec P, Tajovský K (2015) Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. Eur J Soil Biol 68:18–24

    Article  CAS  Google Scholar 

  • Fujii S, Berg MP, Cornelissen JHC (2020) Living litter: dynamic trait spectra predict fauna composition. Trends Ecol Evol 35:886–896

    Article  PubMed  Google Scholar 

  • Fujii S, Cornelissen JHC, Berg MP, Mori AS (2018) Tree leaf and root traits mediate soil faunal contribution to litter decomposition across an elevational gradient. Funct Ecol 32:840–852

    Article  Google Scholar 

  • Fujii S, Makita N, Mori AS, Takeda H (2016) Plant species control and soil faunal involvement in the processes of above- and below-ground litter decomposition. Oikos 125:883–892

    Article  Google Scholar 

  • Garcia-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol Lett 16:1045–1053

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Palacios P, Shaw EA, Wall DH, Hattenschwiler S (2016) Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol Lett 19:554–563

    Article  PubMed  Google Scholar 

  • Gonzalez G, Seastedt TR (2001) Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology 82:955–964

    Article  Google Scholar 

  • Grandy AS, Wieder WR, Wickings K, Kyker-Snowman E (2016) Beyond microbes: are fauna the next frontier in soil biogeochemical models? Soil Biol Biochem 102:40–44

    Article  CAS  Google Scholar 

  • Griffiths HM, Ashton LA, Parr CL, Eggleton P (2021) The impact of invertebrate decomposers on plants and soil. New Phytol 231:2142–2149

    Article  PubMed  Google Scholar 

  • He W, Wu F, Zhang D, Yang W, Tan B, Zhao Y, Wu Q (2015) The effects of forest gaps on cellulose degradation in the foliar litter of two shrub species in an alpine fir forest. Plant Soil 393:109–122

    Article  CAS  Google Scholar 

  • Heneghan L, Coleman DC, Zou X, Crossley DA, Haines BL (1998) Soil microarthropod community structure and litter decomposition dynamics: a study of tropical and temperate sites. Appl Soil Ecol 9:33–38

    Article  Google Scholar 

  • Hirobe M, Sabang J, Bhatta BK, Takeda H (2004) Leaf-litter decomposition of 15 tree species in a lowland tropical rain forest in Sarawak: dynamics of carbon, nutrients, and organic constituents. J for Res 9:347–354

    Article  CAS  Google Scholar 

  • Isebrands JG, Richardson J (2014) Poplars and Willows: Trees for Society and the environment

  • IUSS Working Group (2015) World reference base for Soil Resources 2014, International Soil classification system for naming soils and creating legends for Soil Maps, Update 2015. FAO, Rome, Italy

    Google Scholar 

  • Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Pineiro G (2017) The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu Rev Ecol Evol Syst 48:419–445

    Article  Google Scholar 

  • Joly F-X, Coq S, Coulis M, David J-F, Hattenschwiler S, Mueller CW, Prater I, Subke J-A (2020) Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun Biol 3:660–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampichler C, Bruckner A (2009) The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies. Biol Rev 84:375–389

    Article  PubMed  Google Scholar 

  • Klotzbucher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K (2011) A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 92:1052–1062

    Article  PubMed  Google Scholar 

  • Komarov A, Chertov O, Bykhovets S, Shaw C, Nadporozhskaya M, Frolov P, Shashkov M, Shanin V, Grabarnik P, Priputina I, Zubkova E (2017) Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing. Ecol Model 345:113–124

    Article  CAS  Google Scholar 

  • Lefcheck JS (2016) piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579

    Article  Google Scholar 

  • Lenth RV, Bolker B, Buerkner P, Giné-Vázquez I, Herve M, Jung M, Love J, Miguez F, Riebl H, Singmann H (2023) Estimated marginal means, aka Least-Squares Means. Available via DIALOG. https://cran.r-project.org/web/packages/emmeans/

  • Li X, Yin X, Wang Z, Fan W (2015) Litter mass loss and nutrient release influenced by soil fauna of Betula ermanii forest floor of the Changbai Mountains, China. Appl Soil Ecol 95:15–22

    Article  Google Scholar 

  • Ma C, Yin X, Kou X, Wang Z, Li X, Jiang Y, Wang H, Bernard EC (2019) Effects of Soil fauna on cellulose and lignin decomposition of plant litter in the Changbai Mountain, China. Environ Entomol 48:592–602

    Article  CAS  PubMed  Google Scholar 

  • Makkonen M, Berg MP, Handa IT, Haettenschwiler S, van Ruijven J, van Bodegom PM, Aerts R (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–1041

    Article  PubMed  Google Scholar 

  • Mcclaugherty C, Berg B (1987) Cellulose, lignin and nitrogen concentrations as rate regulating factors in late stages of forest litter decomposition. Pedobiologia 30:101–112

    Article  CAS  Google Scholar 

  • Niu C, Lou A, Sun R, Li Q (2015) Foundations in Ecology, 3rd edn. China Higher Education Press, Bei**g

    Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Peguero G, Sardans J, Asensio D, Fernandez-Martinez M, Gargallo-Garriga A, Grau O, Llusia J, Margalef O, Marquez L, Ogaya R, Urbina I, Courtois EA, Stahl C, Van Langenhove L, Verryckt LT, Richter A, Janssens IA, Penuelas J (2019) Nutrient scarcity strengthens soil fauna control over leaf litter decomposition in tropical rainforests. Proc Royal Soc B-Biol Sci 286:20191300

    Article  CAS  Google Scholar 

  • Perez G, Aubert M, Decaens T, Trap J, Chauvat M (2013) Home-field advantage: a matter of interaction between litter biochemistry and decomposer biota. Soil Biol Biochem 67:245–254

    Article  CAS  Google Scholar 

  • Perez J, Munoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol: Official J Span Soc Microbiol 5:53–63

    Article  CAS  Google Scholar 

  • Rawat M, Arunachalam K, Arunachalam A, Alatalo JM, Pandey R (2020) Predicting litter decomposition rate for temperate forest tree species by the relative contribution of green leaf and litter traits in the indian Himalayas region. Ecol Ind 119:106827

    Article  CAS  Google Scholar 

  • Riutta T, Slade EM, Bebber DP, Taylor ME, Malhi Y, Riordan P, Macdonald DW, Morecroft MD (2012) Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol Biochem 49:124–131

    Article  CAS  Google Scholar 

  • Shipley B (2009) Confirmatory path analysis in a generalized multilevel context. Ecology 90:363–368

    Article  PubMed  Google Scholar 

  • Slade EM, Riutta T (2012) Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. Basic Appl Ecol 13:423–431

    Article  Google Scholar 

  • Song X, Wang Z, Tang X, Xu D, Liu B, Mei J, Huang S, Huang G (2020) The contributions of soil mesofauna to leaf and root litter decomposition of dominant plant species in grassland. Appl Soil Ecol 155:103651

    Article  Google Scholar 

  • Soong JL, Nielsen UN (2016) The role of microarthropods in emerging models of soil organic matter. Soil Biol Biochem 102:37–39

    Article  CAS  Google Scholar 

  • Soong JL, Vandegehuchte ML, Horton AJ, Nielsen UN, Denef K, Shaw EA, de Tomasel CM, Parton W, Wall DH, Cotrufo MF (2016) Soil microarthropods support ecosystem productivity and soil C accrual: evidence from a litter decomposition study in the tallgrass prairie. Soil Biol Biochem 92:230–238

    Article  CAS  Google Scholar 

  • Strickland MS, Osburn E, Lauber C, Fierer N, Bradford MA (2009) Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics. Funct Ecol 23:627–636

    Article  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Tan B, Yin R, Yang W, Zhang J, Xu Z, Liu Y, He S, Zhou W, Zhang L, Li H, Wang L, Liu S, You C (2020a) Soil fauna show different degradation patterns of lignin and cellulose along an elevational gradient. Appl Soil Ecol 155:103673

  • Tan B, Yin R, Zhang J, Xu Z, Liu Y, He S, Zhang L, Li H, Wang L, Liu S, You C, Peng C (2020b) Temperature and moisture modulate the contribution of soil fauna to litter decomposition via different pathways. Ecosystems 24:1142–1156

    Article  Google Scholar 

  • Van Soest P, Robertson JB (1980) System of analysis for evaluating fibrous feeds. In: Pidgen WJ, Balch CC, Graham M (eds) Standardization of Analytical Methodology for Feeds. International Development and Research Centre, Ottawa, Canada, pp 49–60

    Google Scholar 

  • Vedder B, Kampichler C, Bachmann G, Vedder B, Kampichler C, Bachmann G, Bruckner A, Kandeler E (1996) Impact of faunal complexity on microbial biomass and N turnover in field mesocosms from a spruce forest soil. Biol Fertil Soils 22:22–30

    Article  Google Scholar 

  • Wall DH, Bradford MA, St. John MG, Trofymow JA, Behan-Pelletier V, Bignell DDE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V, Gardel HZ, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flemming S, Henschel JR, Johnson DL, Jones TH, Kovarova M, Kranabetter JM, Kutny L, Lin K-C, Maryati M, Masse D, Pokarzhevskii A, Rahman H, Sabara MG, Salamon J-A, Swift MJ, Varela A, Vasconcelos HL, White D, Zou X (2008) Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Change Biol 14:2661–2677

    Article  Google Scholar 

  • Wallwork JA (1976) The distribution and diversity of soil fauna. Academic Press, New York

    Google Scholar 

  • Wang GB, Deng FF, Xu WH, Chen HYH, Ruan HH (2016) Poplar plantations in coastal China: towards the identification of the best rotation age for optimal soil carbon sequestration. Soil Use Manag 32:303–310

    Article  CAS  Google Scholar 

  • Wang S, Ruan H, Wang B (2009) Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains. Soil Biol Biochem 41:891–897

    Article  CAS  Google Scholar 

  • Wang S, Tan Y, Fan H, Ruan H, Zheng A (2015a) Responses of soil microarthropods to inorganic and organic fertilizers in a poplar plantation in a coastal area of eastern China. Appl Soil Ecol 89:69–75

    Article  CAS  Google Scholar 

  • Wang Z, Yin X, Li X (2015b) Soil mesofauna effects on litter decomposition in the coniferous forest of the Changbai Mountains, China. Appl Soil Ecol 92:64–71

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • **ao W, Chen C, Chen X, Huang Z, Chen HYH (2020) Functional and phylogenetic diversity promote litter decomposition across terrestrial ecosystems. Glob Ecol Biogeogr 29:2261–2272

    Article  Google Scholar 

  • **ong Y, Shao Y, **a H, Li Z, Fu S (2008) Selection of selective biocides on soil microarthropods. Soil Biol Biochem 40:2706–2709

    Article  CAS  Google Scholar 

  • Xu X, Sun Y, Sun JJ, Cao PH, Wang YC, Chen HYH, Wang WF, Ruan HH (2020) Cellulose dominantly affects soil fauna in the decomposition of forest litter: a meta-analysis. Geoderma 378:114620

  • Yang X, Chen J (2009) Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biol Biochem 41:910–918

    Article  CAS  Google Scholar 

  • Yin WY (1998) Pictorial keys to soil animals of China. Science Press, Bei**g (in Chinese)

    Google Scholar 

  • Yin R, Eisenhauer N, Auge H, Purahong W, Schmidt A, Schädler M (2019) Additive effects of experimental climate change and land use on faunal contribution to litter decomposition. Soil Biol Biochem 131:141–148

    Article  CAS  Google Scholar 

  • Yue K, Peng C, Yang W, Peng Y, Zhang C, Huang C, Wu F (2016) Degradation of lignin and cellulose during foliar litter decomposition in an alpine forest river. Ecosphere 7(10):e01523

  • Zhou S, Huang C, Han B, **ao Y, Tang J, **ang Y, Luo C (2017) Simulated nitrogen deposition significantly suppresses the decomposition of forest litter in a natural evergreen broad-leaved forest in the Rainy Area of Western China. Plant Soil 420:135–145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (No.2021YFD22004), the National Natural Science Foundation of China (31700555, 32071594 and 32101339), Fujian Youth Natural Science Foundation (No.2020J05245), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0992). Xuan Xu acknowledges the China Scholarship Council for support in the form of a Visiting Scholar Program grant (202008320475) for a one-year study in Tropical Ecology and Entomology Lab, Asian School of the Environment, Nanyang Technological University, Singapore.

Author information

Authors and Affiliations

Authors

Contributions

X.X., W.W., and H.R. designed the study. X.X., P.C., and Y.W. carried out the field work and laboratory work. X.X. analysed the data and wrote the manuscript. E.S., X.Z., W.W., and H.R. contributed to the review and editing of the manuscript, data analysis, and language editing. All authors contributed critically to the drafts and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Weifeng Wang or Honghua Ruan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Alfonso Escudero.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 582 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Slade, E.M., Cao, P. et al. Effects of soil fauna on leaf litter decomposition and nutrient release during a two-year field experiment in a poplar plantation. Plant Soil (2023). https://doi.org/10.1007/s11104-023-06300-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-023-06300-3

Keywords

Navigation