Log in

Spatial distribution and co-occurrence of aerobic ammonia oxidation and anaerobic ammonium oxidation activities in the water-soil interface, bulk, and rhizosphere regions of paddy soil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purpose

Aerobic ammonia oxidation often couples with anaerobic ammonium oxidation (anammox) in natural ecosystems; however, their in situ activities and relative contributions are still unclear.

Methods

We evaluated in situ activities of both processes in the water-soil interface, bulk, and rhizosphere regions of paddy soil by 15N stable isotope.

Results

At the interface, we only detected aerobic ammonia oxidation activities (RA, 6.06 mmol L−1 d−1), and RA was significantly higher than in the other two regions. In the bulk soil, the RA and anammox activities (RAn) were 0.87 and 1.84 mmol L−1 d−1, respectively. In the rhizosphere soil, the RA and RAn were 0.92 and 1.17 mmol L−1 d−1, respectively. Aerobic ammonia oxidation contributed 7.0%, 5.9%, and 3.9% to the total ammonium consumption in the interface, bulk, and rhizosphere regions, respectively, while anammox contributed 13.3% and 5.3% in the bulk and rhizosphere regions, respectively. RA and RAn were positively correlated with transcript abundances of amoA and hzsB genes, respectively, rather than gene abundances. Moreover, dissolved oxygen (DO) was the most critical factor statistically influencing RA and RAn, while dissolved organic carbon (DOC) and total organic carbon (TOC) was also correlated with RAn.

Conclusion

Overall, we demonstrated that in situ aerobic ammonia oxidation in the interface and rhizosphere regions was more active than in the bulk soil, whereas in situ anammox was more active in the bulk soil. This study provides an increased understanding of the in situ distribution and contributions of aerobic ammonia oxidation and anammox co-occurring in complex ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armstrong W (1980) Aeration in higher plants. Adv Bot Res 7:225–332

    Article  Google Scholar 

  • Bai R, ** D, He JZ, Hu HW, Fang YT, Zhang LM (2015) Activity, abundance and community structure of anammox bacteria along depth profiles in three different paddy soils. Soil Biol Biochem 91:212–221

    Article  CAS  Google Scholar 

  • Baolan H, Shuai L, Wei W, Lidong S, Li** L, Wei** L, Guangming T, **angyang X, ** Z (2014) pH-dominated niche segregation of ammonia-oxidising microorganisms in Chinese agricultural soils. FEMS Microbiol Ecol 90:290–299

    Article  PubMed  CAS  Google Scholar 

  • Briones AM, Okabe S, Umemiya Y, Ramsing NB, Reichardt W, Okuyama H (2003) Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars. Plant Soil 250:335–348

    Article  CAS  Google Scholar 

  • Cui S, Shi Y, Groffman PM, Schlesinger WH, Zhu YG (2013) Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910-2010). Proc Natl Acad Sci 110:2052–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  CAS  PubMed  Google Scholar 

  • Ding LJ, An XL, Li S, Zhang GL, Zhu YG (2014) Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. Environ Sci Technol 48:10641–10647

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Sun H, Xue L, Liu Y, Gao Q, Lu K, Yang L (2017) Biochar applied at an appropriate rate can avoid increasing NH 3 volatilization dramatically in rice paddy soil. Chemosphere 168:1277–1284

    Article  CAS  PubMed  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci 102:14683–14688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freitag TE, Prosser JI (2003) Community structure of Ammonia-oxidizing Bacteria within anoxic marine sediments. Appl Environ Microbiol 69:1359–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu C, Zhou H, Zhang Q, Zhao Y, Di H, Liang Y (2017) Effects of various fertilization regimes on abundance and activity of anaerobic ammonium oxidation bacteria in rice-wheat crop** systems in China. Sci Total Environ 599-600:1064–1072

    Article  CAS  PubMed  Google Scholar 

  • Hu BL, Shen LD, Xu XY, Zheng P (2011) Anaerobic ammonium oxidation (anammox) in different natural ecosystems. Biochem Soc Trans 39:1811–1816

    Article  CAS  PubMed  Google Scholar 

  • Huang QQ, Wang Q, Luo Z, Yu Y, Jiang RF, Li HF (2015) Effects of root iron plaque on selenite and selenate dynamics in rhizosphere and uptake by rice (Oryza sativa). Plant Soil 388:255–266

    Article  CAS  Google Scholar 

  • Humbert S, Tarnawski S, Fromin N, Mallet M-P, Aragno M, Zopfi J (2010) Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J 4:450–454

    Article  PubMed  Google Scholar 

  • Jensen K, Revsbech NP, Nielsen LP (1993) Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Appl Environ Microbiol 59:3287–3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ** R-C, Yang G-F, Yu J-J, Zheng P (2012) The inhibition of the Anammox process: a review. Chem Eng J 197:67–79

    Article  CAS  Google Scholar 

  • Kirk GJ, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot 96:639–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Könneke M, Bernhard AE, De La Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  CAS  Google Scholar 

  • Kuzyakov Y, Razavi BS (2019) Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol Biochem 135:343–360

    Article  CAS  Google Scholar 

  • Lam P, Jensen MM, Lavik G, McGinnis DF, Muller B, Schubert CJ et al (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci 104:7104–7109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam P, Lavik G, Jensen MM, Van De Vossenberg J, Schmid M, Woebken D et al (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci 106:4752–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Dunton KH (2000) Diurnal changes in pore water sulfide concentrations in the seagrass Thalassia testudinum beds: the effects of seagrasses on sulfide dynamics. J Exp Mar Biol Ecol 255:201–214

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci U S A 104:11192–11196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YL, Fan XR, Shen QR (2008) The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell Environ 31:73–85

    PubMed  Google Scholar 

  • Li H, Yang X, Weng B, Su J, Sa N, Gilbert JA et al (2016) The phenological stage of rice growth determines anaerobic ammonium oxidation activity in rhizosphere soil. Soil Biol Biochem 100:59–65

    Article  CAS  Google Scholar 

  • Long A, Heitman J, Tobias C, Philips R, Song B (2013) Co-occurring anammox, denitrification, and codenitrification in agricultural soils. Appl Environ Microbiol 79:168–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Liu X, Ma Z, Liu Q, Wu Z, Zeng X et al (2015) Vertical segregation and phylogenetic characterization of Ammonia-oxidizing Bacteria and Archaea in the sediment of a freshwater aquaculture pond. Front Microbiol 6:1539

    PubMed  Google Scholar 

  • Nie S, Li H, Yang X, Zhang Z, Weng B, Huang F et al (2015) Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. ISME J 9:2059–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie S, Zhu GB, Singh B, Zhu YG (2019) Anaerobic ammonium oxidation in agricultural soils-synthesis and prospective. Environ Pollut 244:127–134

    Article  CAS  PubMed  Google Scholar 

  • Nils R-P, Rikke Louise M, Markus S, Mike SMJ, Alex E-P, Søren R, et al. (2004) Anaerobic ammonium oxidation in an estuarine sediment. Aquat Microb Ecol 36:293–304

    Article  Google Scholar 

  • Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18:1403–1414

    Article  CAS  PubMed  Google Scholar 

  • Pitcher A, Villanueva L, Hopmans EC, Schouten S, Reichart G-J, Sinninghe Damsté JS (2011) Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. ISME J 5:1896–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin H, Han C, ** Z, Wu L, Deng H, Zhu G, Zhong W (2018) Vertical distribution and community composition of anammox bacteria in sediments of a eutrophic shallow lake. J Appl Microbiol 125:121–132

    Article  CAS  PubMed  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Ohta H, Yamagishi T, Guo Y, Nishizawa T, Rahman MH, Kuroda H, Kato T, Saito M, Yoshinaga I, Inubushi K, Suwa Y (2012) Detection of anammox activity and 16S rRNA genes in ravine paddy field soil. Microbes Environ 27:316–319

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt I, Sliekers O, Schmid M, Cirpus I, Strous M, Bock E, Kuenen JG, Jetten MS (2002) Aerobic and anaerobic ammonia oxidizing bacteria--competitors or natural partners? FEMS Microbiol Ecol 39:175–181

    CAS  PubMed  Google Scholar 

  • Shan J, Zhao X, Sheng R, **a Y, Ti C, Quan X et al (2016) Dissimilatory nitrate reduction processes in typical Chinese Paddy soils: rates, relative contributions, and influencing factors. Environ Sci Technol 50:9972–9980

    Article  CAS  PubMed  Google Scholar 

  • Shen JP, Zhang LM, Di HJ, He JZ (2012) A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Front Microbiol 3:296

  • Shen LD, Wu HS, Gao ZQ, Xu XH, Chen TX, Liu S, Cheng HX (2015) Occurrence and importance of anaerobic ammonium-oxidising bacteria in vegetable soils. Appl Microbiol Biotechnol 99:5709–5718

    Article  CAS  PubMed  Google Scholar 

  • Shen L-D, Wu H-S, Liu X, Li J (2017) Vertical distribution and activity of anaerobic ammonium-oxidising bacteria in a vegetable field. Geoderma 288:56–63

    Article  CAS  Google Scholar 

  • Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, Van De Pas-Schoonen KT et al (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449

    Article  CAS  PubMed  Google Scholar 

  • Tang C-J, Zheng P, Mahmood Q, Chen J-W (2010) Effect of substrate concentration on stability of anammox biofilm reactors. J Cent S Univ Technol 17:79–84

    Article  CAS  Google Scholar 

  • Wang Y, Zhu G, Harhangi HR, Zhu B, Jetten MS, Yin C et al (2012) Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil. FEMS Microbiol Lett 336:79–88

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Han C, Zhang J, Huang Q, Deng H, Deng Y, Zhong W (2015) Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China. Soil Biol Biochem 84:28–37

    Article  CAS  Google Scholar 

  • Wang Z, Cao Y, Zhu-Barker X, Nicol GW, Wright AL, Jia Z, Jiang X (2019) Comammox Nitrospira clade B contributes to nitrification in soil. Soil Biol Biochem 135:392–395

    Article  CAS  Google Scholar 

  • **a F, Wang J-G, Zhu T, Zou B, Rhee S-K, Quan Z-X (2018) Ubiquity and diversity of complete ammonia oxidizers (comammox). App Environ Microbiol 84:01390–01318

  • Yang WH, Weber KA, Silver WL (2012) Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat Geosci 5:538–541

    Article  CAS  Google Scholar 

  • Zhang J, Chai C-W, ThomasArrigo LK, Zhao S-C, Kretzschmar R, Zhao F-J (2020) Nitrite accumulation is required for microbial anaerobic iron oxidation, but not for arsenite oxidation, in two heterotrophic denitrifiers. Environ Sci Technol 54:4036–4045

  • Zhu G, Jetten MS, Kuschk P, Ettwig KF, Yin C (2010) Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Appl Microbiol Biotechnol 86:1043–1055

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Wang S, Wang Y, Wang C, Risgaard-Petersen N, Jetten MSM, Yin C (2011) Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J 5:1905–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu GB, Wang SY, Wang WD, Wang Y, Zhou LL, Jiang B, HJM o d C, Risgaard-Petersen N, Schwark L, Peng Y, Hefting MM, Jetten MSM, Yin C (2013) Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces. Nat Geosci 6:103–107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the groups of Prof. Zucong Cai in the Nan**g Normal University and Prof. **aoyuan Yan in the Institute of Soil Science, Chinese Academy of Sciences for nitrogen measurements. We thank LetPub for its linguistic assistance during the preparation of this manuscript.

Data Availability

Not applicable.

Code availability

Not applicable.

Pearl millet; Rhizosphere microbial diversity; Rhizosphere enzymatic activities; Rhizosheath; Metabarcoding.

Funding

This study was funded by the National Natural Science Foundation of China (41771286, 42077033 and 41730753) and the National Key Research and Development Program of China (2016YFD0200302).

Author information

Authors and Affiliations

Authors

Contributions

WenHui Zhong, Cheng Han and Jie Xu conceived and designed research. Jie Xu conducted experiments and analyzed data. Jie Xu wrote and modified the manuscript with the help of Cheng Han and Yunbin Jiang. All of the authors gave final approval for publication of this manuscript.

Corresponding author

Correspondence to Wenhui Zhong.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Paul Bodelier.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Han, C., Jiang, Y. et al. Spatial distribution and co-occurrence of aerobic ammonia oxidation and anaerobic ammonium oxidation activities in the water-soil interface, bulk, and rhizosphere regions of paddy soil. Plant Soil 466, 557–568 (2021). https://doi.org/10.1007/s11104-021-04987-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04987-w

Keywords

Navigation