Log in

Visualization of grapevine root colonization by the Saharan soil isolate Saccharothrix algeriensis NRRL B-24137 using DOPE-FISH microscopy

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aim

There is currently a gap of knowledge regarding whether some beneficial bacteria isolated from desert soils can colonize epi- and endophytically plants of temperate regions. In this study, the early steps of the colonization process of one of these bacteria, Saccharothrix algeriensis NRRL B-24137, was studied on grapevine roots to determine if this beneficial strain can colonize a non-natural host plant. An improved method of fluorescence in situ hybridization (FISH), the double labeling of oligonucleotide probes (DOPE)-FISH technique was used to visualize the colonization behavior of such bacteria as well as to determine if the method could be used to track microbes on and inside plants.

Methods

A probe specific to Saccharothrix spp. was firstly designed. Visualization of the colonization behavior of S. algeriensis NRRL B-24137 on and inside roots of grapevine plants was then carried out with DOPE-FISH microscopy.

Results

The results showed that 10 days after inoculation, the strain could colonize the root hair zone, root elongation zone, as well as root emergence sites by establishing different forms of bacterial structures as revealed by the DOPE-FISH technique. Further observations showed that the strain could be also endophytic inside the endorhiza of grapevine plants.

Conclusions

Taking into account the natural niches of this beneficial strain, this study exemplifies that, in spite of its isolation from desert soil, the strain can establish populations as well as subpopulations on and inside grapevine plants and that the DOPE-FISH tool can allow to detect it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  • Barrow JR, Lucero ME, Reyes-Vera I, Havstad KM (2008) Do symbiotic microbes have a role in plant evolution, performance and response to stress? Com Integr Biol 1:69–73

    Article  Google Scholar 

  • Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol 11:557–574

    Article  Google Scholar 

  • Brandl MT (2009) Applying fluorescence microscopy to the investigation of the behavior of foodborne pathogens on produce. In: Postek MT, Newbury DE, Platek SF, Joy DC (eds) Proc. SPIE 7378, pp 73782A1-73782A5

  • Brandl MT, Monier J-M (2005) Methods in microscopy for the visualization of bacteria and their behavior on plants. In: Gorny JR, Yousef AE, Sapers GM (eds) Microbiology of fruits and vegetables. CRC Press, New York, pp 595–619

    Google Scholar 

  • Buddrus-Schiemann K, Schmid M, Schreiner K, Welzl G, Hartmann A (2010) Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley. Microb Ecol 60:381–393

    Article  PubMed  Google Scholar 

  • Chin-A-Woeng TFC, de Priester W, van der Bij AJ, Lugtenberg BJJ (1997) Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol Plant Microbe Interact 10:79–86

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Ait Barka E (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Kaplan H, Sessitsch A, Nowak J, Ait Barka E, Clément C (2008) Endophytic colonization of Burkholderia phytofirmans strain PsJN in Vitis vinifera L.: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010a) Plant growth-promoting bacteria in the rhizo- and endosphere of plants. Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Compant S, van der Heijden M, Sessitsch A (2010b) Climate change effects on beneficial plant–microbes interactions. FEMS Microbiol Ecol 73:197–214

    PubMed  CAS  Google Scholar 

  • Compant S, Reiter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197

    Article  PubMed  Google Scholar 

  • Coombs JT, Franco CMM (2003) Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol 69:4260–4262

    Article  PubMed  CAS  Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520

    Google Scholar 

  • Hallmann J (2001) Plant interactions with endophytic bacteria. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant–pathogen associations. CABI, Wallingford, pp 87–119

    Chapter  Google Scholar 

  • Hallmann J, Berg B (2007) Spectrum and population dynamics of bacterial root endophytes. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 15–31

    Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  PubMed  CAS  Google Scholar 

  • Herschkovitz Y, Lerner A, Davidov Y, Rothballer M, Hartmann A, Okon Y, Jurkevitch E (2005) Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Microb Ecol 50:277–288

    Article  PubMed  CAS  Google Scholar 

  • Lamari L, Zitouni A, Boudjella H, Bad** B, Sabaou N, Lebrihi A, Lefebvre G, Seguin E, Tillequin F (2002a) New dithiolopyrrolones antibiotics from Saccharothrix sp. SA 233: I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 55:696–701

    Article  PubMed  CAS  Google Scholar 

  • Lamari L, Zitouni A, Dob T, Sabaou N, Lebrihi A, Germain P, Seguin E, Tillequin F (2002b) New dithiolopyrrolone antibiotics from Saccharothrix sp. SA 233. II. Physiochemical properties and structure elucidation. J Antibiot 55:702–707

    Article  PubMed  CAS  Google Scholar 

  • Larrainzar E, O’Gara F, Morrissey JP (2005) Applications of autofluorescent proteins for in situ studies in microbial ecology. Annu Rev Microbiol 59:257–277

    Article  PubMed  CAS  Google Scholar 

  • Loy A, Maixner F, Wagner M, Horn M (2007) probeBase—an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res 35:D800–D804

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Mercado-Blanco J, Prieto P (2012) Bacterial endophytes and root hairs. Plant Soil 361:301–306

    Article  CAS  Google Scholar 

  • Merzaeva OV, Shirokikh IG (2006) Colonization of plant rhizosphere by actinomycetes of different genera. Microbiology 75:226–230

    Article  CAS  Google Scholar 

  • Muzammil S (2012) Saccharothrix algeriensis NRRL B-24137: biocontrol properties, colonization and induced systemic resistance towards Botrytis cinerea on grapevine and Arabidopsis thaliana. PhD thesis, INP-ENSAT, Castanet-Tolosan, France, pp. 117–126.

  • Muzammil S, Compant S, Yu Z, Mathieu F, Lebrihi A (2011) Saccharothrix algeriensis NRRL B-24137: a new endophyte with high potential to protect grapevine towards Botrytis cinerea in case of high temperature conditions. In: Oeno 2011—Actes de colloques du 9e symposium international d’oenologie de Bordeaux. Dunod, in press.

  • Prieto P, Schilirò E, Maldonado-González M, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microbial Ecol 62:435–445

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    Article  PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opinion Plant Biol 14:435–443

    Article  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interaction with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  PubMed  CAS  Google Scholar 

  • Semenov AM, van Bruggen AHC, Zelenov VV (1999) Moving waves of bacterial populations and total organic carbon along roots of wheat. Microbiol Ecol 37:116–128

    Article  CAS  Google Scholar 

  • Stoecker K, Dorninger C, Daims H, Wagner M (2010) Double-labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl Environ Microbiol 76:922–926

    Article  PubMed  CAS  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove H, Deobald LA, Bailey FJ, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Wagner M, Haider S (2012) New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. Curr Opinion Biotech 23:96–102

    Article  CAS  Google Scholar 

  • Wagner M, Horn M, Daims H (2003) Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr Opin Microbiol 6:302–309

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz LS, Noguera DR (2004) Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization. Appl Environ Microbiol 70:7126–7139

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz LS, Noguera DR (2007) Development of thermodynamic models for simulating probe dissociation profiles in fluorescence in situ hybridization. Biotechnol Bioengin 96:349–363

    Article  CAS  Google Scholar 

  • Yilmaz LS, Okten HE, Noguera DR (2006) All regions of the 16S rRNA of Escherichia coli are accessible in situ to DNA oligonucleotides with sufficient thermodynamic affinity. Appl Environ Microbiol 72:733–744

    Article  PubMed  CAS  Google Scholar 

  • Zitouni A (1995) Les genres Nocardiopsis et Saccharothrix (Actinomycetales) dans les sols sahariens: taxonomie numérique, extraction, purification et caractérisation de quelques antibiotiques synthétisés. Magister de microbiologie, E.N.S. de Kouba, Algeria

    Google Scholar 

  • Zitouni A, Lamari L, Boudjella H, Badji B, Sabaou N, Gaouar A, Mathieu F, Lebrihi A, Labeda DP (2004) Saccharothrix algeriensis sp. nov., isolated from Saharan soil. Int J Syst Evol Microbiol 54:1377–1381

    Article  PubMed  CAS  Google Scholar 

  • Zitouni A, Boudjella H, Lamari L, Badji B, Mathieu F, Lebrihi A, Sabaou N (2005) Nocardiopsis and Saccharothrix genera in Saharan soils in Algeria: isolation, biological activities and partial characterisation of antibiotics. Res Microbiol 156:984–993

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for according PhD scholarships to Ms. Saima Muzammil. Additional thanks for the platform of microscopy of INRA Castanet-Tolosan (France) for allowing us the use of microtome and glass knives. We would like also to acknowledge Dr. Günter Brader and Ms. Helen Smith (AIT, Austria) for proof reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Compant.

Additional information

Responsible Editor: Jesus Mercado-Blanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Compant, S., Muzammil, S., Lebrihi, A. et al. Visualization of grapevine root colonization by the Saharan soil isolate Saccharothrix algeriensis NRRL B-24137 using DOPE-FISH microscopy. Plant Soil 370, 583–591 (2013). https://doi.org/10.1007/s11104-013-1648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1648-6

Keywords

Navigation