Log in

GhBES1 mediates brassinosteroid regulation of leaf size by activating expression of GhEXO2 in cotton (Gossypium hirsutum)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

We proposed a working model of BR to promote leaf size through cell expansion. In the BR signaling pathway, GhBES1 affects cotton leaf size by binding to and activating the expression of the E-box element in the GhEXO2 promoter region.

Abstract

Brassinosteroid (BR) is an essential phytohormone that controls plant growth. However, the mechanisms of BR regulation of leaf size remain to be determined. Here, we found that the BR deficient cotton mutant pagoda1 (pag1) had a smaller leaf size than wild-type CRI24. The expression of EXORDIUM (GhEXO2) gene, was significantly downregulated in pag1. Silencing of BRI1-EMS-SUPPRESSOR 1 (GhBES1), inhibited leaf cell expansion and reduced leaf size. Overexpression of GhBES1.4 promoted leaf cell expansion and enlarged leaf size. Expression analysis showed GhEXO2 expression positively correlated with GhBES1 expression. In plants, altered expression of GhEXO2 promoted leaf cell expansion affecting leaf size. Furthermore, GhBES1.4 specifically binds to the E-box elements in the GhEXO2 promoter, inducing its expression. RNA-seq data revealed many down-regulated genes related to cell expansion in GhEXO2 silenced plants. In summary, we discovered a novel mechanism of BR regulation of leaf size through GhBES1 directly activating the expression of GhEXO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All datasets generated for this study are included in the article/Supplementary Files.

References

  • Ali F, Qanmber G, Li F, Wang Z (2021) Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res 35:199–214

    Article  Google Scholar 

  • Andres RJ, Bowman DT, Jones DC, Kuraparthy V (2016) Major leaf shapes of cotton: genetics and agronomic effects in crop production. J Cotton Sci 20(4):330–340

    Article  Google Scholar 

  • Andres RJ, Coneva V, Frank MH, Tuttle JR, Samayoa LF, Han S-W, Kaur B, Zhu L, Fang H, Bowman DT (2017) Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.). Proc National Acad Sci 114(1):E57–E66

    Article  CAS  Google Scholar 

  • Aya K, Hobo T, Sato-Izawa K, Ueguchi-Tanaka M, Kitano H, Matsuoka M (2014) A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. Plant Cell Physiol 55(5):897–912

    Article  CAS  Google Scholar 

  • Azpiroz R, Wu Y, LoCascio JC, Feldmann KA (1998) An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10(2):219–230

    Article  CAS  Google Scholar 

  • Bai M-Y, Zhang L-Y, Gampala SS, Zhu S-W, Song W-Y, Chong K, Wang Z-Y (2007) Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci 104(34):13839–13844

    Article  CAS  Google Scholar 

  • Bajwa KS, Shahid AA, Rao AQ, Bashir A, Aftab A, Husnain T (2015) Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton. Front Plant Sci 6:838

    Article  Google Scholar 

  • Cheng Y, Lu L, Yang Z, Wu Z, Qin W, Yu D, Ren Z, Li Y, Wang L, Li F, Yang Z (2016) GhCaM7-like, a calcium sensor gene, influences cotton fiber elongation and biomass production. Plant Physiol Biochem 109:128–136

  • Chen L-G, Gao Z, Zhao Z, Liu X, Li Y, Zhang Y, Liu X, Sun Y, Tang W (2019) BZR1 family transcription factors function redundantly and indispensably in BR signaling but exhibit BRI1-independent function in regulating anther development in Arabidopsis. Mol Plant 12(10):1408–1415

    Article  CAS  Google Scholar 

  • Chen L, Yang H, Fang Y, Guo W, Chen H, Zhang X, Dai W, Chen S, Hao Q, Yuan S (2021) Overexpression of GmMYB14 improves high-density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway. Plant Biotechnol J 19(4):702–716

    Article  CAS  Google Scholar 

  • Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10(2):231–243

    CAS  Google Scholar 

  • Chory J, Nagpal P, Peto CA (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3(5):445–459

    Article  CAS  Google Scholar 

  • Chung Y, Choe S (2013) The regulation of brassinosteroid biosynthesis in Arabidopsis. Crit Rev Plant Sci 32(6):396–410

    Article  Google Scholar 

  • Clough SJ, Bent AFJTPJ (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  Google Scholar 

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111(3):671–678

    Article  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Ann Rev Plant Biol 49(1):427–451

    Article  CAS  Google Scholar 

  • Coll-Garcia D, Mazuch J, Altmann T, Müssig C (2004) EXORDIUM regulates brassinosteroid-responsive genes. FEBS Lett 563(1–3):82–86

    Article  CAS  Google Scholar 

  • Dinesh-Kumar S, Anandalakshmi R, Marathe R, Schiff M, Liu Y (2003) Virus-induced gene silencing. In: Plant Functional Genomics. Springer, pp 287–293

  • Dockter C, Gruszka D, Braumann I, Druka A, Druka I, Franckowiak J, Gough SP, Janeczko A, Kurowska M, Lundqvist J (2014) Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol 166(4):1912–1927

    Article  Google Scholar 

  • Dolan L, Poethig RS (1991) Genetic analysis of leaf development in cotton.

  • Farrar K, Evans IM, Top** JF, Souter MA, Nielsen JE, Lindsey K (2003) EXORDIUM–a gene expressed in proliferating cells and with a role in meristem function, identified by promoter trap** in Arabidopsis. Plant J 33(1):61–73

    Article  CAS  Google Scholar 

  • Goh H-H, Sloan J, Dorca-Fornell C, Fleming A (2012) Inducible repression of multiple expansin genes leads to growth suppression during leaf development. Plant Physiol 159(4):1759–1770

    Article  CAS  Google Scholar 

  • Gonzalez N, Vanhaeren H, Inzé D (2012) Leaf size control: complex coordination of cell division and expansion. Trends Plant Sci 17(6):332–340

    Article  CAS  Google Scholar 

  • Guo H, Li L, Aluru M, Aluru S, Yin Y (2013) Mechanisms and networks for brassinosteroid regulated gene expression. Curr Opin Plant Biol 16(5):545–553

    Article  CAS  Google Scholar 

  • He J-X, Gendron JM, Sun Y, Gampala SS, Gendron N, Sun CQ, Wang Z-Y (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307(5715):1634–1638

    Article  CAS  Google Scholar 

  • He P, Zhang Y, Li H, Fu X, Shang H, Zou C, Friml J, **ao G (2021) GhARF16-1 modulates leaf development by transcriptionally regulating the GhKNOX2-1 gene in cotton. Plant Biotechnol J 19(3):548

    Article  CAS  Google Scholar 

  • Jensen JK, Kim H, Cocuron JC, Orler R, Ralph J, Wilkerson CG (2011) The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. Plant J 66(3):387–400

    Article  CAS  Google Scholar 

  • Jiang J, Zhang C, Wang X (2015) A recently evolved isoform of the transcription factor BES1 promotes brassinosteroid signaling and development in Arabidopsis thaliana. Plant Cell 27(2):361–374. https://doi.org/10.1105/tpc.114.133678

    Article  CAS  Google Scholar 

  • Kim T-W, Guan S, Sun Y, Deng Z, Tang W, Shang J-X, Sun Y, Burlingame AL, Wang Z-Y (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11(10):1254–1260

    Article  CAS  Google Scholar 

  • Kour J, Kohli SK, Khanna K, Bakshi P, Sharma P, Singh AD, Ibrahim M, Devi K, Sharma N, Ohri P (2021) Brassinosteroid signaling, crosstalk and physiological functions in plants under heavy metal stress. Front Plant Sci 12:29

    Article  Google Scholar 

  • Kukurba KR, Montgomery SBJCSHP (2015) RNA sequencing and analysis. Cold Spring Harb Protoc 11:084970

    Google Scholar 

  • Kumar S, Tamura K, Nei MJB (1994) MEGA: molecular evolutionary genetics analysis software for microcomputers. Bioinformatics 10(2):189–191

    Article  CAS  Google Scholar 

  • Lee YK, Kim G-T, Kim I-J, Park J, Kwak S-S, Choi G, Chung W-I (2006) LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development 133(21):4305–4314

    Article  CAS  Google Scholar 

  • Li J (2010) Regulation of the nuclear activities of brassinosteroid signaling. Curr Opin Plant Biol 13(5):540–547

    Article  CAS  Google Scholar 

  • Li J, Chory JJC (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90(5):929–938

    Article  CAS  Google Scholar 

  • Li J, Nagpal P, Vitart V, McMorris TC, Chory JJS (1996) A role for brassinosteroids in light-dependent development of arabidopsis. Science 272(5260):398–401

    Article  CAS  Google Scholar 

  • Li L, Yu X, Thompson A, Guo M, Yoshida S, Asami T, Chory J, Yin Y (2009) Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. Plant J 58(2):275–286

    Article  CAS  Google Scholar 

  • Li Q-F, Lu J, Yu J-W, Zhang C-Q, He J-X (1861) Liu Q-Q (2018) The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. Biochim Biophys Acta (BBA) 6:561–571

    Google Scholar 

  • Liu D, Shi S, Hao Z, **ong W, Luo M (2019) OsbZIP81, A Homologue of Arabidopsis VIP1, may positively regulate JA levels by directly targetting the genes in JA signaling and metabolism pathway in rice. Int J Mol Sci 20(9):2360

    Article  CAS  Google Scholar 

  • Liu L, **e Z, Lu L, Qanmber G, Chen G, Li S, Guo M, Sun Z, Liu Z, Yang Z (2021a) Identification of BR biosynthesis genes in cotton reveals that GhCPD-3 restores BR biosynthesis and mediates plant growth and development. Planta 254(4):1–17

    Article  Google Scholar 

  • Liu W, Lv Y, Li X, Feng Z, Wang L (2021b) Comparative transcriptome analysis uncovers cell wall reorganization and repressed cell division during cotton fiber initiation. BMC Dev Biol 21(1):1–13

    Article  CAS  Google Scholar 

  • Liu Z, Qanmber G, Lu L, Qin W, Liu J, Li J, Ma S, Yang Z, Yang Z (2018) Genome-wide analysis of BES1 genes in Gossypium revealed their evolutionary conserved roles in brassinosteroid signaling. Sci China Life Sci 61(12):1566–1582

    Article  CAS  Google Scholar 

  • Liu ZH, Chen Y, Wang NN, Chen YH, Wei N, Lu R, Li Y, Li XB (2020) A basic helix–loop–helix protein (GhFP1) promotes fibre elongation of cotton (Gossypium hirsutum) by modulating brassinosteroid biosynthesis and signalling. New Phytol 225(6):2439–2452

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT. Method 25(4):402–408

    Article  CAS  Google Scholar 

  • Malik W, Shah MSA, Abid MA, Qanmber G, Noor E, Qayyum A, Liang C, Guo S, Zhang R (2018) Genetic basis of variation for fiber quality and quality related biochemical traits in Bt and non-Bt colored cotton. Intl J Agric Biol 20:2117–2124

    Google Scholar 

  • Mao J, Li JJIJOMS (2020) Regulation of Three Key Kinases of Brassinosteroid Signaling Pathway. Int J Mol Sci 21(12):4340

    Article  CAS  Google Scholar 

  • Nikolov LA, Runions A, Gupta MD, Tsiantis M (2019) Leaf development and evolution. Curr Top Dev Biol 131:109–139

    Article  Google Scholar 

  • Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Fejpp T (1999) Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121(3):743–752

    Article  CAS  Google Scholar 

  • Nolan T, Chen J, Yin YJBJ (2017) Cross-talk of brassinosteroid signaling in controlling growth and stress responses. Biochem J 474(16):2641–2661

    Article  CAS  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295

    Article  CAS  Google Scholar 

  • Phillips R, Sarang M, Gibson N (1993) Semiquantitative measurement of gene-expression by rt-PCR-a cautionary tale. Int J Oncol 3(6):1097–1102

    CAS  Google Scholar 

  • Praveena J, Dash S, Behera L, Rout GRJCJOAS Technology (2020) Brassinosteroids: a multifunctional phytohormone of plant development and stress responses. Curr J Appl Sci Technol 39:174–196

    Article  Google Scholar 

  • Qian W, Wu C, Fu Y, Hu G, He Z, Liu W (2017) Novel rice mutants overexpressing the brassinosteroid catabolic gene CYP734A4. Plant Mol Biol 93(1–2):197–208

    Article  CAS  Google Scholar 

  • Qiao S, Sun S, Wang L, Wu Z, Li C, Li X, Wang T, Leng L, Tian W, Lu T (2017) The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture. Plant Cell 29(2):292–309

    Article  CAS  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GKJB (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  Google Scholar 

  • Saitou N, Nei MJMB (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  Google Scholar 

  • Schröder F, Lisso J, Lange P, Müssig C (2009) The extracellular EXO protein mediates cell expansion in Arabidopsis leaves. BMC Plant Biol 9(1):1–12

    Article  Google Scholar 

  • Schröder F, Lisso J, Müssig CJPS (2012) Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis. Plant Signal Behav 7(1):22–27

    Article  Google Scholar 

  • Shang B, Xu C, Zhang X, Cao H, **n W, Hu Y (2016) Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis. Proc Natl Acad Sci 113(18):5101–5106

    Article  CAS  Google Scholar 

  • Sousa AO, Camillo LR, Assis ETC, Lima NS, Silva GO, Kirch RP, Silva DC, Ferraz A, Pasquali G, Costa MG (2020) EgPHI-1, a PHOSPHATE-INDUCED-1 gene from Eucalyptus globulus, is involved in shoot growth, xylem fiber length and secondary cell wall properties. Planta 252(3):1–17

    Article  Google Scholar 

  • Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY, He JX, Bai MY, Zhu S, Oh E (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in arabidopsis. Dev Cell 19(5):765–777

    Article  CAS  Google Scholar 

  • Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85(2):171–182

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DGJC (2003) Multiple sequence alignment using ClustalW and ClustalX. Curr Protocols Bioinform 1:23–2322

    Google Scholar 

  • Tian F, Yang D-C, Meng Y-Q, ** J, Gao G (2020) PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res 48(D1):D1104–D1113

    CAS  Google Scholar 

  • Todd J, Post-Beittenmiller D, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17(2):119–130

    Article  CAS  Google Scholar 

  • Vert G, Nemhauser JL, Geldner N, Hong F, Chory J (2005) Molecular Mechanisms of Steroid Hormone Signaling in Plants. Ann Rev Cell Dev Biol 21:177–201

    Article  CAS  Google Scholar 

  • Wan S, Wu J, Zhang Z, Sun X, Lv Y, Gao C, Ning Y, Ma J, Guo Y, Zhang Q (2009) Activation tagging, an efficient tool for functional analysis of the rice genome. Plant Mol Biol 69(1–2):69–80

    Article  CAS  Google Scholar 

  • Wang L, Yang Z, Zhang B, Yu D, Liu J, Gong Q, Qanmber G, Li Y, Lu L, Lin Y (2018) Genome-wide characterization and phylogenetic analysis of GSK gene family in three species of cotton: evidence for a role of some GSKs in fiber development and responses to stress. BMC Plant Biol 18(1):1–21

    Article  Google Scholar 

  • Wang X, Zhang J, Yuan M, Ehrhardt DW, Wang Z, Mao TJTPC (2012) Arabidopsis microtubule destabilizing protein40 is involved in brassinosteroid regulation of hypocotyl elongation. Plant Cell 24(10):4012–4025

    Article  CAS  Google Scholar 

  • Wanjie SW, Welti R, Moreau RA, Chapman KD (2005) Identification and quantification of glycerolipids in cotton fibers: reconciliation with metabolic pathway predictions from DNA databases. Lipids 40(8):773–785

    Article  CAS  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJJB (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191

    Article  CAS  Google Scholar 

  • Wu P, Song X, Wang Z, Duan W, Hu R, Wang W, Li Y, Hou X (2016) Genome-wide analysis of the BES1 transcription factor family in Chinese cabbage (Brassica rapa ssp pekinensis). Plant Growth Regul 80(3):291–301

    Article  CAS  Google Scholar 

  • **e L, Yang C, Wang XJJ (2011) Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. J Exp Bot 62(13):4495–4506

    Article  CAS  Google Scholar 

  • Yang C-J, Zhang C, Lu Y-N, ** J-Q, Wang X-LJM (2011) The mechanisms of brassinosteroids’ action: from signal transduction to plant development. Mol Plant 4(4):588–600

    Article  CAS  Google Scholar 

  • Yang ZR, Zhang CJ, Yang XJ, Liu K, Wu ZX, Zhang XY, Zheng W, Xun QQ, Liu CL, Lu LL, Yang ZE, Qian YY, Xu ZZ, Li CF, Li J, Li FG (2014) PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytol 203(2):437–448. https://doi.org/10.1111/nph.12824

    Article  CAS  Google Scholar 

  • Ye H, Li L, Guo H, Yin Y (2012) MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci 109(49):20142–20147

    Article  CAS  Google Scholar 

  • Yin Y, Wang Z-Y, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory JJC (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109(2):181–191

    Article  CAS  Google Scholar 

  • Yu D, Qanmber G, Lu L, Wang L, Li J, Yang Z, Liu Z, Li Y, Chen Q, Mendu V (2018a) Genome-wide analysis of cotton GH3 subfamily II reveals functional divergence in fiber development, hormone response and plant architecture. BMC Plant Biol 18(1):1–18

    Article  CAS  Google Scholar 

  • Yu G, Wang L-G, Han Y, He Q-Y (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287

    Article  CAS  Google Scholar 

  • Yu H, Feng W, Sun F, Zhang Y, Qu J, Liu B, Lu F, Yang L, Fu F, Li W (2018b) Cloning and characterization of BES1/BZR1 transcription factor genes in maize. Plant Growth Regul 86(2):235–249

    Article  CAS  Google Scholar 

  • Zhang L-Y, Bai M-Y, Wu J, Zhu J-Y, Wang H, Zhang Z, Wang W, Sun Y, Zhao J, Sun X (2009) Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell 21(12):3767–3780

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank **n Li and Peng Huo (Zhengzhou Research Center, Institute of Cotton Research of CAAS, Zhengzhou) for their technical assistance.

Funding

This work was supported by grants from the National Natural Science Foundation of China (31971987), Creative Research Groups of China (31621005), Natural Science Foundation of Henan (212300410093) and State Key Laboratory of Cotton Biology Open Fund (CB2020A02).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. SL: Experimentation, writing. KX: Methodology, formal analysis, Writing & editing. GQ: Writing & editing. GC: Conceptualization, writing – review & editing. LL: Software, data curation. MG: Formal analysis. YH: Review & editing. LL: Methodology, data curation. ZL: Supervision. ZY: Supervision.

Corresponding authors

Correspondence to Zhao Liu or Zuoren Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11103_2022_1313_MOESM1_ESM.tif

Graphical representation of average cell area, number of cells per leaf area, and total number of cortical cells. (A) The average area of cells in the selected area in the leaf of pag1 and WT (CRI24) plants. (B) The average area of cells in the selected area in the leaf of overexpression GhBES1.4, GhBES1-RNAi, and WT (CRI24) plants. (C) The average area of cells in the selected area in the leaf of VIGS-GhEXO2 and vector control plants. (D) The number of cells per leaf area in the selected area in the leaf of pag1 and WT (CRI24) plants (20,000 μm 2). (E) The number of cells per leaf area in the selected area in the leaf of overexpression GhBES1.4, GhBES1-RNAi, and WT (CRI24) plants (20,000 μm 2). (F) The number of cells per leaf area in the selected area in the leaf of VIGS-GhEXO2 and vector control plants (20,000 μm 2). (G) The total number of cortical cells in the leaf of pag1 and WT (CRI24) plants. (H) The total number of cortical cells in the leaf of overexpression GhBES1.4, GhBES1-RNAi, and WT (CRI24) plants. (I) The total number of cortical cells in the leaf of VIGS-GhEXO2 and vector control plants. Student’s t-test: ** P<0.05,***P<0.001. Supplementary file1 (TIF 17631 kb)

11103_2022_1313_MOESM2_ESM.tif

(A) Heatmap of expression of DEGs related to hormone-related pathway in pag1 cotyledon transcriptome data. (B) Heatmap of DEG expression associated with cell expansion-related pathways in GhBES1.4 overexpression cotyledon transcriptome data. Supplementary file2 (TIF 3320 kb)

11103_2022_1313_MOESM3_ESM.tif

(A) Multiple sequence alignment of GhEXO2 and Arabidopsis EXO proteins showed the presence of the conserved Phi_1 domain and a signal peptide region in all observed EXO proteins. (B) Phylogenetic analysis of GhEXO genes and Arabidopsis EXO genes. Supplementary file3 (TIF 20380 kb)

11103_2022_1313_MOESM4_ESM.tif

Identification of GhBES1 transgenic plants. (A) qRT-PCR validation of GhBES1.2, GhBES1.4, and GhBES1.5 transcript levels in RNAi plants. (B) PCR validation of GhBES1-pBI121 vector in RNAi plants. Primer sequences are provided in Table S2. (C) qRT-PCR validation of GhBES1.4 transcript levels in overexpressed plants. (D) PCR validation of GhBES1-pCAMBIA2300 vector in GhBES1.4 overexpression plants. Student’s t-test: *P<0.05, **P<0.01,***P<0.001. Supplementary file4 (TIF 9890 kb)

Phenotype of GhBES1.4 overexpression (A) and GhBES1.4-RNAi (B) plant. Supplementary file5 (TIF 16964 kb)

11103_2022_1313_MOESM6_ESM.tif

(A) Microscopic imaging analysis for cell elongation in the stem of GhEXO2 silenced and control plants. (B) Graphical representation of the number of cells in the selected area in the stem of GhEXO2 silenced and control plants. Each experiment was performed with three biological repeats and the error bars indicate the standard deviation among these replicates. Student’s t-test: ***P<0.001. Supplementary file6 (TIF 7008 kb)

11103_2022_1313_MOESM7_ESM.tif

Relative expression patterns of cell elongation genes. qRT-PCR analysis of selected genes (from RNA-seq data) related to cell elongation (GhKCS, GhEXPA4, GhEXPA8s, GhIRX15-L, and GhLNG1) and BR biosynthesis (GhCPD and GhDWF4) was conducted. Each experiment was performed in three biological repeats and the error bar indicated the standard deviation among these replicates. Supplementary file7 (TIF 10603 kb)

Results of RNA-seq data analysis and gene expression data. Supplementary file8 (XLSX 17709 kb)

All primer sequences used in this study. Supplementary file9 (DOCX 21 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., **ng, K., Qanmber, G. et al. GhBES1 mediates brassinosteroid regulation of leaf size by activating expression of GhEXO2 in cotton (Gossypium hirsutum). Plant Mol Biol 111, 89–106 (2023). https://doi.org/10.1007/s11103-022-01313-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-022-01313-5

Keywords

Navigation