Log in

Revealing floral metabolite network in tuberose that underpins scent volatiles synthesis, storage and emission

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

The role of central carbon metabolism in the synthesis and emission of scent volatiles in tuberose flowers was revealed through measurement of changes in transcripts and metabolites levels.

Abstract

Tuberose or Agave amica (Medikus) Thiede & Govaerts is a widely cultivated ornamental plant in several subtropical countries. Little is known about metabolite networking involved in biosynthesis of specialized metabolites utilizing primary metabolites. In this study, metabolite profiling and gene expression analyses were carried out from six stages of maturation throughout floral lifespan. Multivariate analysis indicated distinction between early and late maturation stages. Further, the roles of sugars viz. sucrose, glucose and fructose in synthesis, glycosylation and emission of floral scent volatiles were studied. Transcript levels of an ABC G family transporter (picked up from the floral transcriptome) was in synchronization with terpene volatiles emission during the anthesis stage. A diversion from phenylpropanoid/benzenoid to flavonoid metabolism was observed as flowers mature. Further, it was suggested that this metabolic shift could be mediated by isoforms of 4-Coumarate-CoA ligase along with Myb308 transcription factor. Maximum glycosylation of floral scent volatiles was shown to occur at the late mature stage when emission declined, facilitating both storage and export from the floral tissues. Thus, this study provides an insight into floral scent volatiles synthesis, storage and emission by measuring changes at transcripts and metabolites levels in tuberose throughout floral lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Metabolite or transcriptome data used in this study are readily available from corresponding author upon request.

References

  • Adebesin F, Widhalm JR, Boachon B, Lefèvre F, Pierman B, Lynch JH, Alam I, Junqueira B, Benke R, Ray S, Porter JA (2017) Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science 356:1386–1388

    Article  CAS  PubMed  Google Scholar 

  • Almaraz-Abarca N, Delgado-Alvarado EA, Antonio’Avila-Reyes J, Uribe-Soto JN, González-Valdez LS (2013) The phenols of the genus Agave (Agavaceae). J Biomater Nanobiotechnol 4:9–16

    Article  CAS  Google Scholar 

  • Barman M, Mitra A (2019) Temporal relationship between emitted and endogenous floral scent volatiles in summer-and winter-blooming Jasminum species. Physiol Plant 166:946–959

    Article  CAS  PubMed  Google Scholar 

  • Barman M, Mitra A (2021) Floral maturation and changing air temperatures influence scent volatiles biosynthesis and emission in Jasminum auriculatum Vahl. Environ Exp Bot 181:104296

    Article  CAS  Google Scholar 

  • Boachon B, Lynch JH, Ray S, Yuan J, Caldo KM, Junker RR, Kessler SA, Morgan JA, Dudareva N (2019) Natural fumigation as a mechanism for volatile transport between flower organs. Nat Chem Biol 15:583–588

    Article  CAS  PubMed  Google Scholar 

  • Borghi M, Fernie AR (2017) Floral metabolism of sugars and amino acids: implications for pollinators’ preferences and seed and fruit set. Plant Physiol 175:1510–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong J, Wishart DS, **a J (2019) Using metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics 68:e86

    Article  PubMed  Google Scholar 

  • Cna’ani A, Shavit R, Ravid J, Aravena-Calvo J, Skaliter O, Masci T, Vainstein A (2017) Phenylpropanoid scent compounds in Petunia x hybrida are glycosylated and accumulate in vacuoles. Front Plant Sci 8:1898

    Article  PubMed  PubMed Central  Google Scholar 

  • Coe EH, McCormick SM, Modena SA (1981) White pollen in maize. J Hered 72:318–320

    Article  Google Scholar 

  • Dancer JE, Ap Rees T (1989) Effects of 2, 4-dinitrophenol and anoxia on the inorganic-pyrophosphate content of the spadix of Arum maculatum and the root apices of Pisum sativum. Planta 178:421–424

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    Article  CAS  PubMed  Google Scholar 

  • Ehlting J, Büttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E (1999) Three 4-coumarate: coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J 19:9–20

    Article  CAS  PubMed  Google Scholar 

  • El-Moghazy AM, Ali AA, Ross SA, El-Shanawany MA (1980) Phytochemical studies on Polianthes tuberosa L. Fitoterapia 51:179–181

    CAS  Google Scholar 

  • Fan R, Chen Y, Ye X, Wu J, Lin B, Zhong H (2018) Transcriptome analysis of Polianthes tuberosa during floral scent formation. PLoS ONE 13:e0199261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farag MA, Rasheed DM, Kamal IM (2015) Volatiles and primary metabolites profiling in two Hibiscus sabdariffa (roselle) cultivars via headspace SPME-GC-MS and chemometrics. Food Res Int 78:327–335

    Article  CAS  PubMed  Google Scholar 

  • Feller U, Fischer A (1994) Nitrogen metabolism in senescing leaves. Crit Rev Plant Sci 13:241–273

    Article  CAS  Google Scholar 

  • Flores-Pérez Ú, Pérez-Gil J, Closa M, Wright LP, Botella-Pavía P, Phillips MA, Ferrer A, Gershenzon J, Rodríguez-Concepción M (2010) Pleiotropic regulatory locus 1 (PRL1) integrates the regulation of sugar responses with isoprenoid metabolism in Arabidopsis. Mol Plant 3:101–112

    Article  PubMed  CAS  Google Scholar 

  • Gui J, Shen J, Li L (2011) Functional characterization of evolutionarily divergent 4-coumarate: coenzyme A ligases in rice. Plant Physiol 157:574–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanhineva K, Rogachev I, Kokko H, Mintz-Oron S, Venger I, Kärenlampi S, Aharoni A (2008) Non-targeted analysis of spatial metabolite composition in strawberry (Fragaria × ananassa) flowers. Phytochemistry 69:2463–2481

    Article  CAS  PubMed  Google Scholar 

  • Ho LC, Nichols R (1975) The role of phloem transport in the translocation of sucrose along the stem of carnation cut flowers. Ann Bot 39:439–446

    Article  CAS  Google Scholar 

  • Hu Z, Tang B, Wu Q, Zheng J, Leng P, Zhang K (2017) Transcriptome sequencing analysis reveals a difference in monoterpene biosynthesis between scented Lilium Siberia and unscented Lilium Novano. Front Plant Sci 8:1351

    Article  PubMed  PubMed Central  Google Scholar 

  • Ichimura K, Mukasa Y, Fujiwara T, Kohata K, Goto R, Suto K (1999) Possible roles of methyl glucoside and myo-inositol in the opening of cut rose flowers. Ann Bot 83:551–557

    Article  CAS  Google Scholar 

  • IOFI Working Group on Methods of Analysis (2011) Guidelines for the quantitative gas chromatography of volatile flavouring substances, from the working group on methods of analysis of the international organization of the flavor industry (IOFI). Flavour Frag J 26:297–299

    Google Scholar 

  • ** JM, Zhang YJ, Yang CR (2004) Spirostanol and furostanol glycosides from the fresh tubers of Polianthes tuberosa. J Nat Prod 67:5–9

    Article  CAS  PubMed  Google Scholar 

  • Kondo M, Oyama-Okubo N, Ando T, Marchesi E, Nakayama M (2006) Floral scent diversity is differently expressed in emitted and endogenous components in Petunia axillaris lines. Ann Bot 98:1253–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutty NN, Mitra A (2019) Profiling of volatile and non-volatile metabolites in Polianthes tuberosa L. flowers reveals intraspecific variation among cultivars. Phytochemistry 162:10–20

    Article  CAS  PubMed  Google Scholar 

  • Langer KM, Jones CR, Jaworski EA, Rushing GV, Kim JY, Clark DG, Colquhoun TA (2014) PhDAHP1 is required for floral volatile benzenoid/phenylpropanoid biosynthesis in Petunia × hybrida cv ‘Mitchell Diploid.’ Phytochemistry 103:22–31

    Article  CAS  PubMed  Google Scholar 

  • Lim TK (2014) Polianthes tuberosa. In: Lim TK (ed) Edible medicinal and non-medicinal plants. Springer, Netherlands, pp 126–133

    Chapter  Google Scholar 

  • Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, Kessler D, Klinkenberg PM, Gorder MK, Hou BH, Qu XQ, Carter CJ (2014) Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508:546–549

    Article  CAS  PubMed  Google Scholar 

  • Lin LZ, Harnly JM (2007) A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. J Agric Food Chem 55:1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lulin H, **ao Y, Pei S, Wen T, Shangqin H (2012) The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers. PLoS ONE 7:e38653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maiti S (2017) An insight into the scent volatiles biogenesis in Polianthes tuberosa L. (tuberose) flower. PhD Dissertation, Indian Institute of Technology Kharagpur

  • Maiti S, Mitra A (2017) Morphological, physiological and ultrastructural changes in flowers explain the spatio-temporal emission of scent volatiles in Polianthes tuberosa L. Plant Cell Physiol 58:2095–2111

    Article  CAS  PubMed  Google Scholar 

  • Maiti S, Mitra A (2019) Elucidation of headspace volatilome in Polianthes tuberosa flower for identifying non-invasive biomarkers. Hortic Environ Biotech 60:269–280

    Article  Google Scholar 

  • Maiti S, Moon UR, Bera P, Samanta T, Mitra A (2014) The in vitro antioxidant capacities of Polianthes tuberosa L. flower extracts. Acta Physiol Plant 36:2597–2605

    Article  CAS  Google Scholar 

  • Majetic CJ, Sinka BN (2013) Diverging pathways: differential benzenoid and phenylpropanoid volatile production in Phlox subulata L. cultivars. Biochem Syst Ecol 50:75–81

    Article  CAS  Google Scholar 

  • Masclaux C, Valadier MH, Brugière N, Morot-Gaudry JF, Hirel B (2000) Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 211:510–518

    Article  CAS  PubMed  Google Scholar 

  • Meena S, Kumar SR, Venkata Rao DK, Dwivedi V, Shilpashree HB, Rastogi S et al (2016) De novo sequencing and analysis of lemongrass transcriptome provide first insights into the essential oil biosynthesis of aromatic grasses. Front Plant Sci 7:1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng PH, Raynaud C, Tcherkez G, Blanchet S, Massoud K, Domenichini S, Henry Y, Soubigou-Taconnat L, Lelarge-Trouverie C, Saindrenan P, Renou J (2009) Crosstalks between myo-inositol metabolism, programmed cell death and basal immunity in Arabidopsis. PLoS ONE 4:e7364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mimaki Y, Yokosuka A, Sakuma C, Sakagami H, Sashida Y (2002) Spirostanol pentaglycosides from the underground parts of Polianthes tuberosa. J Nat Prod 65:1424–1428

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Nagel C, Taylor LP (1992) Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA 89:7213–7217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhlemann JK, Maeda H, Chang CY, San Miguel P, Baxter I, Cooper B, Perera MA, Nikolau BJ, Vitek O, Morgan JA, Dudareva N (2012) Developmental changes in the metabolic network of snapdragon flowers. PLoS ONE 7:e40381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller GL, Drincovich MF, Andreo CS, Lara MV (2010) Role of photosynthesis and analysis of key enzymes involved in primary metabolism throughout the lifespan of the tobacco flower. J Exp Bot 61:3675–3688

    Article  PubMed  CAS  Google Scholar 

  • Norikoshi R, Kohata K, Shimizu-Yumoto H, Goto R, Ichimura K (2016) Identification of soluble carbohydrates and their subcellular concentrations in petals during flower opening in Eustoma grandiflorum. Hort J 85:238–247

    Article  CAS  Google Scholar 

  • Orlova I, Marshall-Colón A, Schnepp J, Wood B, Varbanova M, Fridman E, Blakeslee JJ, Peer WA, Murphy AS, Rhodes D, Pichersky E (2006) Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Plant Cell 18:3458–3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyama-Okubo N, Sakai T, Ando T, Nakayama M, Soga T (2013) Metabolome profiling of floral scent production in Petunia axillaris. Phytochemistry 90:37–42

    Article  CAS  PubMed  Google Scholar 

  • Rastogi S, Kumar R, Chanotiya CS, Shanker K, Gupta MM, Nagegowda DA, Shasany AK (2013) 4-Coumarate: CoA ligase partitions metabolites for eugenol biosynthesis. Plant Cell Physiol 54:1238–1252

    Article  CAS  PubMed  Google Scholar 

  • Rees SB, Harborne JB (1985) The role of sesquiterpene lactones and phenolics in the chemical defence of the chicory plant. Phytochemistry 24:2225–2231

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol: chloroform. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot093450

    Article  Google Scholar 

  • Santiago R, de Armas R, Fontaniella B, Vicente C, Legaz ME (2009) Changes in soluble and cell wall-bound hydroxycinnamic and hydroxybenzoic acids in sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. Eur J Plant Pathol 124:439–450

    Article  CAS  Google Scholar 

  • Sasaki K, Takase H, Kobayashi H, Matsuo H, Takata R (2015) Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from grapevine cultivar Muscat Bailey A (Vitis labrusca × V. vinifera). J Exp Bot 66:6167–6174

    Article  CAS  PubMed  Google Scholar 

  • Seymour RS (1999) Pattern of respiration by intact inflorescences of the thermogenic arum lily Philodendron selloum. J Exp Bot 50:845–852

    Article  CAS  Google Scholar 

  • Singh A, Desgagné-Penix I (2017) Transcriptome and metabolome profiling of Narcissus pseudonarcissus ‘King Alfred’ reveal components of Amaryllidaceae alkaloid metabolism. Sci Rep 7:1–4

    Article  CAS  Google Scholar 

  • Sircar D, Roychowdhury A, Mitra A (2007) Accumulation of p-hydroxybenzoic acid in hairy roots of Daucus carota. J Plant Physiol 164:1358–1366

    Article  CAS  PubMed  Google Scholar 

  • Stukkens Y, Bultreys A, Grec S, Trombik T, Vanham D, Boutry M (2005) NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiol 139:341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Styczynski MP, Moxley JF, Tong LV, Walther JL, Jensen KL, Stephanopoulos GN (2007) Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Anal Chem 79:966–973

    Article  CAS  PubMed  Google Scholar 

  • Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, Martin C (1998) The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10:135–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Biol 48:461–491

    Article  CAS  Google Scholar 

  • Thiede J, Govaerts R (2017) New combinations in Agave (Asparagaceae): A. amica, A. nanchititlensis, and A. quilae. Phytotaxa 306:237–240

    Article  Google Scholar 

  • Toh C, Mohd Hairul AR, Ain NM, Namasivayam P, Go R, Abdullah NAP, Abdullah MO (2017) Floral micromorphology and transcriptome analyses of a fragrant Vandaceous Orchid, Vanda Mimi Palmer, for its fragrance production sites. BMC Res Notes 10:554

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi SK, Tuteja N (2007) Integrated signalling in flower senescence: an overview. Plant Signal Behav 2:437–445

    Article  PubMed  PubMed Central  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Doorn WG (2004) Is petal senescence due to sugar starvation? Plant Physiol 134:35–42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vogt T, Taylor LP (1995) Flavonol 3-O-glycosyltransferases associated with petunia pollen produce gametophyte-specific flavonol diglycosides. Plant Physiol 108:903–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldron KW, Parr AJ, Ng A, Ralph J (1996) Cell wall esterified phenolic dimers: identification and quantification by reverse phase high performance liquid chromatography and diode array detection. Phytochem Anal 7:305–312

    Article  CAS  Google Scholar 

  • Wang CH, Yu J, Cai YX, Zhu PP, Liu CY, Zhao AC, Lü RH, Li MJ, Xu FX, Yu MD (2016) Characterization and functional analysis of 4-coumarate: CoA ligase genes in mulberry. PLoS ONE 11:e0155814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Widhalm JR, Dudareva N (2015) A familiar ring to it: biosynthesis of plant benzoic acids. Mol Plant 8:83–97

    Article  CAS  PubMed  Google Scholar 

  • Wink M (2008) Plant secondary metabolism: diversity, function and its evolution. Nat Prod Commun. https://doi.org/10.1177/1934578X0800300801

    Article  Google Scholar 

  • Wu B, Cao X, Liu H, Zhu C, Klee H, Zhang B, Chen K (2019) UDP-glucosyltransferase PpUGT85A2 controls volatile glycosylation in peach. J Exp Bot 70:925–936

    Article  CAS  PubMed  Google Scholar 

  • Yadav UP, Ivakov A, Feil R, Duan GY, Walther D, Giavalisco P, Piques M, Carillo P, Hubberten HM, Stitt M, Lunn JE (2014) The sucrose–trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. J Exp Bot 65:1051–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RA, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol 149:1860–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Yang W, Zhou Y, Zhang J, Li Y, Ahmad S, Zhang Q (2017) Comparative transcriptome reveals benzenoid biosynthesis regulation as inducer of floral scent in the woody plant Prunus mume. Front Plant Sci 8:319

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wu DG, Huang WG (1965) Steroidal sapogenins from the plants in Yunnan province II. Steroidal sapogenins from Dioscoreaceae and Agavaceae plants. Acta Pharm Sin 12:392–397

    Google Scholar 

  • Zhu HH, Yang JX, **ao CH, Mao TY, Zhang J, Zhang HY (2019) Differences in flavonoid pathway metabolites and transcripts affect yellow petal colouration in the aquatic plant Nelumbo nucifera. BMC Plant Biol 19:277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant [Grant No. 307(Sanc)/ST/P/S&T/1G-56/2017 to A. Mitra] from the Department of Science & Technology and Biotechnology (www.wbdstbt.in), Government of West Bengal, India, and an extramural grant [38(1336)/12/EMR-II to A. Mitra] from the Council of Scientific and Industrial Research (CSIR; www.csirhrdg.res.in), India. NN Kutty and U Ghissing were recipients of individual doctoral fellowship Awards Nos. 09/081(1247)/2015-EMR-I and 09/081(1291)/2017-EMR-I, respectively, from the CSIR, India.

Author information

Authors and Affiliations

Authors

Contributions

NNK and AM designed and conceived the experiments. NNK, the first author and a Ph.D. student, performed all the experiments, analyzed the data and wrote the draft manuscript. UG carried out the real-time PCR analysis along with NNK and took part in proof-reading of the manuscript. AM, the corresponding author, took the overall responsibility including the analysis of data and making the final draft of the manuscript with NNK and UG.

Corresponding author

Correspondence to Adinpunya Mitra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1964 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutty, N.N., Ghissing, U. & Mitra, A. Revealing floral metabolite network in tuberose that underpins scent volatiles synthesis, storage and emission. Plant Mol Biol 106, 533–554 (2021). https://doi.org/10.1007/s11103-021-01171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01171-7

Keywords

Navigation