Log in

AtObgC, a plant ortholog of bacterial Obg, is a chloroplast-targeting GTPase essential for early embryogenesis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Obg is a ribosome-associated GTPase essential for bacterial viability and is conserved in most organisms, from bacteria to eukaryotes. Obg is also expressed in plants, which predicts an important role for this molecule in plant viability; however, the functions of the plant Obg homologs have not been reported. Here, we first identified Arabidopsis AtObgC as a plant chloroplast-targeting Obg and elucidated its molecular biological and physiological properties. AtObgC encodes a plant-specific Obg GTPase that contains an N-terminal region for chloroplast targeting and has intrinsic GTP hydrolysis activity. A targeting assay using a few AtObgC N-terminal truncation mutants revealed that AtObgC localizes to chloroplasts and its transit peptide consists of more than 50 amino acid residues. Interestingly, GFP-fused full-length AtObgC exhibited a punctate staining pattern in chloroplasts of Arabidopsis protoplasts, which suggests a dimerization or multimerization of AtObgC. Moreover, its Obg fold was indispensable for the generation of the punctate staining pattern, and thus, was supposed to be important for such oligomerization of AtObgC by mediating the protein–protein interaction. In addition, the T-DNA insertion AtObgC null mutant exhibited an embryonic lethal phenotype that disturbed the early stage of embryogenesis. Altogether, our results provide a significant implication that AtObgC as a chloroplast targeting GTPase plays an important role at the early embryogenesis by exerting its function in chloroplast protein synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

G domain:

GTPase domain

GFP:

Green fluorescent protein

OCT:

Obg C-terminal region

PPR:

Pentatrico-peptide repeat

RFP:

Red fluorescent protein

References

  • Bang WY, Kim SW, Ueda A, Vikram M, Yun DJ, Bressan RA, Hasegawa PM, Bahk JD, Koiwa H (2006) Arabidopsis carboxyl-terminal domain phosphatase-like isoforms share common catalytic and interaction domains but have distinct in planta functions. Plant Physiol 142:586–594

    Article  CAS  PubMed  Google Scholar 

  • Bang WY, Jeong IS, Kim DW, Im CH, Ji C, Hwang SM, Kim SW, Son YS, Jeong J, Shiina T, Bahk JD (2008) Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene expression profiling. Plant Cell Physiol 49:1350–1363

    Article  CAS  PubMed  Google Scholar 

  • Bar-Sagi D, Hall A (2000) Ras and Rho GTPases a family reunion. Cell 103:227–238

    Article  CAS  PubMed  Google Scholar 

  • Berg M, Rogers R, Muralla R, Meinke D (2005) Requirement of aminoacyl-tRNA synthetases for gametogenesis and embryo development in Arabidopsis. Plant J 44:866–878

    Article  CAS  PubMed  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132

    Article  CAS  PubMed  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127

    Article  CAS  PubMed  Google Scholar 

  • Brown ED (2005) Conserved P-loop GTPases of unknown function in bacteria: an emerging and vital ensemble in bacterial physiology. Biochem Cell Biol 83:738–746

    Article  CAS  PubMed  Google Scholar 

  • Buglino J, Shen V, Hakimian P, Lima CD (2002) Structural and biochemical analysis of the Obg GTP binding protein. Structure 10:1581–1592

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Vera TM, Vanhauwe J, Thomas TO, Medkova M, Preininger A, Mazzoni MR, Hamm HE (2003) Insights into G protein structure, function, and regulation. Endocrine Rev 24:765–781

    Article  CAS  Google Scholar 

  • Caldon CE, March PE (2003) Function of the universally conserved bacterial GTPases. Curr Opin Microbiol 6:135–139

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Comartin DJ, Brown ED (2006) Non-ribosomal factors in ribosome subunit assembly are emerging targets for new antibacterial drugs. Curr Opin Pharmacol 6:453–458

    Article  CAS  PubMed  Google Scholar 

  • Czyz A, Wegrzyn G (2005) The obg subfamily of bacterial GTP-binding proteins: essential proteins of largely unknown functions that are evolutionarily conserved from bacteriato humans. Acta Biochim Pol 52:35–43

    CAS  PubMed  Google Scholar 

  • Datta K, Skidmore JM, Pu K, Maddock JR (2004) The Caulobacter crescentus GTPase CgtAC is required for progression through the cell cycle and for maintaining 50S ribosomal subunit levels. Mol Microbiol 54:1379–1392

    Article  CAS  PubMed  Google Scholar 

  • Foti JJ, Schienda J, Sutera VA, Lovett ST (2005) A bacterial G protein-mediated response to replication arrest. Mol Cell 17:549–560

    Article  CAS  PubMed  Google Scholar 

  • Heo JB, Rho HS, Kim SW, Hwang SM, Kwon HJ, Nahm MY, Bang WY, Bahk JD (2005) OsGAP1 functions as a positive regulator of OsRab11-mediated TGN to PM or vacuole trafficking. Plant Cell Physiol 46:2005–2018

    Article  CAS  PubMed  Google Scholar 

  • Hirano Y, Ohniwa RL, Wada C, Yoshimura SH, Takeyasu K (2006) Human small G proteins, ObgH1, and ObgH2, participate in the maintenance of mitochondria and nucleolar architectures. Genes Cells 11:1295–1304

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Datta K, Walker A, Strahler J, Bagamasbad P, Andrews PC, Maddock JR (2006) The Escherichia coli GTPase CgtAE is involved in late steps of large ribosome assembly. J Bacteriol 188:6757–6770

    Article  CAS  PubMed  Google Scholar 

  • Kukimoto-Niino M, Murayama K, Inoue M, Terada T, Tame JRH, Kuramitsu S, Shirouzu M, Yokoyama S (2004) Crystal structure of the GTP-binding protein Obg from Thermus thermophilus HB8. J Mol Biol 337:761–770

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Hoang MH, Han HJ, Kim HS, Lee K, Kim KE, Kim DH, Lee SY, Chung WS (2009) Pathogen inducible voltage-dependent anion channel (AtVDAC) isoforms are localized to mitochondria membrane in Arabidopsis. Mol Cells 27:321–327

    Article  CAS  PubMed  Google Scholar 

  • Leipe DD, Wolf YI, Koonin EV, Aravind L (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317:41–72

    Article  CAS  PubMed  Google Scholar 

  • Lin B, Covalle KL, Maddock JR (1999) The Caulobacter crescentus CgtA protein displays unusual guanine nucleotide binding and exchange properties. J Bacteriol 181:5825–5832

    CAS  PubMed  Google Scholar 

  • Lin B, Thayer DA, Maddock JR (2004) The Caulobacter crescentus CgtAC Protein cosediments with the free 50S ribosomal subunit. J Bacteriol 186:481–489

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Meinke DW (1998) The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development. Plant J 16:21–31

    Article  CAS  PubMed  Google Scholar 

  • Maddock J, Bhatt A, Koch M, Skidmore J (1997) Identification of an essential Caulobacter crescentus gene encoding a member of the Obg family of GTP-binding proteins. J Bacteriol 179:6426–6431

    CAS  PubMed  Google Scholar 

  • Michel B (2005) Obg/CtgA, a signaling protein that controls replication, translation, and morphological development? Dev Cell 8:300–301

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Ochi K (1998) An essential GTP-binding protein functions as a regulator for differentiation in Streptomyces coelicolor. Mol Microbiol 30:107–119

    Article  CAS  PubMed  Google Scholar 

  • Polakis P, McCormick F (1993) Structural requirements for the interaction of p21ras with GAP, exchange factors, and its biological effector target. J Biol Chem 268:9157–9160

    CAS  PubMed  Google Scholar 

  • Price RA, Palmer JD, Al-Shehbaz IA, Meyerowitz EM, Somerville CR (1994) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–4545

    Article  CAS  PubMed  Google Scholar 

  • Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sato A, Kobayashi G, Hayashi H, Yoshida H, Wada A, Maeda M, Hiraga S, Takeyasu K, Wada C (2005) The GTP binding protein Obg homolog ObgE is involved in ribosome maturation. Genes Cells 10:393–408

    Article  CAS  PubMed  Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670

    Article  CAS  PubMed  Google Scholar 

  • Scott JM, Ju J, Mitchell T, Haldenwang WG (2000) The Bacillus subtilis GTP binding protein Obg and regulators of the σB stress response transcription factor cofractionate with ribosomes. J Bacteriol 182:2771–2777

    Article  CAS  PubMed  Google Scholar 

  • Seo HS, Choi CH, Lee SY, Cho MJ, Bahk JD (1997) Biochemical characteristics of a rice (Oryza sativa L., IR36) G-protein a-subunit expressed in Escherichia coli. Biochem J 324:273–281

    CAS  PubMed  Google Scholar 

  • Shepherd PR, Salvesen G, Toker A, Graham SV, Roberts S, Buckley N, Finkel SE, Horowitz JM, Meisterernst M, Morgan I (2002) Impaired chromosome partitioning and synchronization of DNA replication initiation in an insertional mutant in the Vibrio harveyi cgtA gene coding for a common GTP-binding protein. Biochem J 362:579–584

    Article  Google Scholar 

  • Sikora AE, Zielke R, Datta K, Maddock JR (2006) The Vibrio harveyi GTPase CgtAV is essential and is associated with the 50S ribosomal subunit. J Bacteriol 188:1205–1210

    Article  CAS  PubMed  Google Scholar 

  • Sprang SR (1997) G protein mechanisms: insights from structural analysis. Annu Rev Biochem 66:639–678

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Jakob U, Bardwell JCA (2002) Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase. J Bacteriol 184:2692–2698

    Article  CAS  PubMed  Google Scholar 

  • Trach K, Hoch JA (1989) The Bacillus subtilis spo0B stage 0 sporulation operon encodes an essential GTP-binding protein. J Bacteriol 171:1362–1371

    CAS  PubMed  Google Scholar 

  • Wout P, Pu K, Sullivan SM, Reese V, Zhou S, Lin B, Maddock JR (2004) The Escherichia coli GTPase CgtAE cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase. J Bacteriol 186:5249–5257

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302:842–846

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Hisashi Koiwa at the Texas A&M University for the kind gift of the pENSOTG vector and Prof. Woo Sik Chung and Dr. Sang Min Lee at the Gyeongsang National University in Korea for providing the F 1 -ATPase-RFP clone as a mitochondrial marker. J. Chen, I·S. Jeong, D.W. Kim, C·H. Im, and Y. Lee are graduate students supported by scholarships from the BK21 program at the Gyeongsang National University in Korea. This work was supported by grants from the BK21 program and the EB-NCRC (#R15-2003-012-01002-0) of the Ministry of Education and Science Technology of Korea, and by the New Energy and Industrial Technology Development Organization (the Green Biotechnology Program) and Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (Nos. 18570048 and 19039030 to T.S.) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Dong Bahk.

Additional information

Woo Young Bang, Akira Hata and In Sil Jeong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF 71 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bang, W.Y., Hata, A., Jeong, I.S. et al. AtObgC, a plant ortholog of bacterial Obg, is a chloroplast-targeting GTPase essential for early embryogenesis. Plant Mol Biol 71, 379 (2009). https://doi.org/10.1007/s11103-009-9529-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11103-009-9529-3

Keywords

Navigation