Log in

Molecular approaches to prevent UV-induced premature skin aging: focus on phytochemicals as photo-protectants

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Chronic exposure to ultraviolet radiation (UVR) leads to premature aging of the skin, with external manifestations of unsightly scars and internal molecular dysregulations that significantly reduce the protective function of the skin and increase the risk of cancer development. Photoprotection through daily application of sunscreen product is widely recommended to avoid UV-induced skin photodamage and to minimaze the risk for dermal malignancies. However, the environmental hazard that is a consequence of the use of traditional sunscreen products drives the increased interest in the investigation of alternative UVR blockers. Due to their structural diversity, modulation of multiple molecular mechanisms, and favorable safety profile, natural plant-derived compounds have become attractive candidates for skin photoaging prevention. This review summarizes the critical aspects of skin photoaging, from its pathological characteristics and current photoprotective options to the specific molecular players that emerge as therapeutic targets. Special emphasis has been placed on phytochemicals targeting the molecular hallmarks of UV-induced skin aging. The potential of plant molecules to control oxidative stress, inflammation, photo-senescence, DNA damage, extracellular matrix components degradation, and to manage different types of UV-trigerred cell death has been highlighted. Summarizing the molecular signalling pathways responsible for the photoprotective action of plant-derived molecules may provide meaningful outlook for development of new effective therapeutics options for prevention of skin photoaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

This research received funding from the European Union’s Horizon 2020 research and innovation programme, project PlantaSYST (SGA No 739582 under FPA No. 664620), and the BG05M2OP001-1.003-001-C01 project, financed by the European Regional Development Fund through the “Science and Education for Smart Growth” Operational Programme.

Funding

This work was supported by the European Union’s Horizon 2020 research and innovation programme, project PlantaSYST (SGA No 739582 under FPA No. 664620), and the BG05M2OP001-1.003-001-C01 project, financed by the European Regional Development Fund through the “Science and Education for Smart Growth” Operational Programme.

Author information

Authors and Affiliations

Authors

Contributions

IDS: conceptualization, methodology, visualization, writing—original draft. IKK: conceptualization, methodology, visualization, writing—original draft. BKB: methodology, visualization, writing—original draft. LVM: conceptualization, methodology, visualization, writing—original draft, review and editing. MIG: conceptualization, supervision, funding acquisition, writing—review and editing.

Corresponding author

Correspondence to Milen I. Georgiev.

Ethics declarations

Conflict of interest

The authors declare that the work on this review paper was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoykova, I.D., Koycheva, I.K., Binev, B.K. et al. Molecular approaches to prevent UV-induced premature skin aging: focus on phytochemicals as photo-protectants. Phytochem Rev (2024). https://doi.org/10.1007/s11101-024-09952-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11101-024-09952-w

Keywords

Navigation