Log in

Allelopathy research on the continuous crop** problem of poplar (populus)

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The mechanism of decline in continuous plantations is currently a popular research topic in forestry. Continuous crop** is a common obstacle in poplar production and management, and maintaining productivity is a technical challenge. Recent studies have shown that continuous crop** of poplars leads to a reduction in biomass, but there is a lack of information summarizing the effects of plant secondary compounds on belowground interactions. This paper explores the allelopathic phenomenon, which refers to the inhibitory or promoting effects of poplar tissue extracts on plants. The paper also considers the environmental behaviors of allelochemicals derived from poplars, including their secretion, degradation, adsorption, retention, and phytotoxicity. A conceptual model of the autotoxicity mechanism of continuous crop** poplar is proposed from three aspects: microorganisms, soil enzymes, and nutrient changes, with the goal of overcoming poplar autotoxicity. Finally, the research results and potential application prospects of biotechnological methods related to the allelopathic effects of poplar are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed U, Rao MJ, Qi C, **e Q, Noushahi HA, Yaseen M, Shi X, Zheng B (2021) Expression profiling of flavonoid biosynthesis genes and secondary metabolites accumulation in Populus under drought stress. Molecules 26:5546

    Article  CAS  PubMed Central  Google Scholar 

  • An M, Johnson I, Lovett J (1996) Mathematical modeling of allelopathy I. Phytotoxicity caused by plant residues during decomposition. Allelopath J 3:33–42

    Google Scholar 

  • Anwar U, Schulte LA, Helmers M, Kolka RK (2017) The effect of five biomass crop** systems on soil-saturated hydraulic conductivity across a topographic gradient. Bioenergy Research 10:824–831

    Article  CAS  Google Scholar 

  • Bao YJ, Chen JX, Zhang YG, Alisdair FR, Zhang JH, Huang BX, Zhu FY, Cao FL (2023) Emerging role of jasmonic acid in woody plant development. Adv Agrochem. https://doi.org/10.1016/j.aac.2023.11.002

    Article  Google Scholar 

  • Beaudette C, Bradley RL, Whalen JK, McVetty PBE, Vessey K, Smith DL (2010) Tree-based intercrop** does not compromise canola (Brassica napus L.) seed oil yield and reduces soil nitrous oxide emissions. Agr Ecosyst Environ 139:33–39

    Article  CAS  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Beule L, Lehtsaar E, Corre MD, Schmidt M, Veldkamp E, Karlovsky P (2020) Poplar rows in temperate agroforestry croplands promote bacteria, fungi, and denitrification genes in soils. Front Microbiol 10:3108

    Article  PubMed Central  Google Scholar 

  • Bialic-Murphy L, Smith NG, Voothuluru P, McElderry RM, Roche MD, Cassidy ST, Kivlin SN, Kalisz S (2021) Invasion-induced root–fungal disruptions alter plant water and nitrogen economies. Ecol Lett 24:1145–1156

    Article  Google Scholar 

  • Blum U (2004) Fate of phenolic allelochemicals in soils-the role of soil and rhizosphere microorganisms. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Bonanomi G, Zotti M, Idbella M, Mazzoleni S, ElGawad AMA (2021) Microbiota modulation of allelopathy depends on litter chemistry: mitigation or exacerbation? Sci Total Environ 776:145942

    Article  CAS  Google Scholar 

  • Bradow JM, Connick WJ (1990) Volatile seed germination inhibitors from plant residues. J Chem Ecol 16:645–666

    Article  CAS  Google Scholar 

  • Cao P, Luo S (1994) Studies on the allelopathy of tea plant Camellia sinensis (L.) Kuntze. J South China Agric Univ 15:129–133

    Google Scholar 

  • Castaldi S, Carfora A, Fiorentino A, Natale A, Messere A, Miglietta F, Cotrufo MF (2009) Inhibition of net nitrification activity in a mediterranean woodland: possible role of chemicals produced by Arbutus unedo. Plant Soil 315:273–283

    Article  CAS  Google Scholar 

  • Castells E (2004) Indirect effects of phenolics on plant performance by altering nitrogen cycling: another mechanism of plant-plant negative interactions. In: International symposium on allelopathy research and application. Sanshui, Guangdong, China pp 137–156

  • Castells E, Peñuelas J, Valentine DW (2003) Influence of the phenolic compound bearing species Ledum palustre on soil N cycling in a boreal hardwood forest. Plant Soil 251:155–166

    Article  CAS  Google Scholar 

  • Chancellor RJ (1985) Allelopathy. By Elroy L. rice. Experimental agriculture. Academic Press Inc, Orlando, Florida, p 422

    Google Scholar 

  • Chen F, Liu CJ, Tschaplinski TJ, Zhao N (2009) Genomics of secondary metabolism in Populus: interactions with biotic and abiotic environments. Crit Rev Plant Sci 28:375–392

    Article  CAS  Google Scholar 

  • Chen Y, Zhang JH, Chen MX, Zhu FY, Song T (2023) Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review. Agr Water Manag 289:108523

    Article  Google Scholar 

  • Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020

    Article  PubMed Central  Google Scholar 

  • Chou CH (1995) Allelopathy and sustainable agriculture. ACS Press, Washington DC, USA

    Google Scholar 

  • Cummings JA, Parker IM, Gilbert GSJPE (2012) Allelopathy: a tool for weed management in forest restoration. Plant Ecol 213:1975–1989

    Article  Google Scholar 

  • Dong Y, Zhu W, Ding C, Huang Q, Wang H, Li S, Wang Y (2020) Root order-dependent responses of poplar fine root morphology to phenolic acids. J Nan**g for Univ (natural Science Edition) 44:39–46 ((in Chinese))

    CAS  Google Scholar 

  • Edwards J, Santos-Medellín C, Nguyen B, Kilmer J, Liechty Z, Veliz E, Ni J, Phillips G, Sundaresan V (2019) Soil domestication by rice cultivation results in plant-soil feedback through shifts in soil microbiota. Genome Biol 20:1–14

    Article  Google Scholar 

  • Ehlers BK, Berg MP, Staudt M, Holmstrup M, Glasius M, Ellers J, Tomiolo S, Madsen RB, Slotsbo S, Penuelas J (2020) Plant secondary compounds in soil and their role in belowground species interactions. Trends Ecol Evol 35:716–730

    Article  PubMed  Google Scholar 

  • Ehlting B, Dluzniewska P, Dietrich H, Selle A, Teuber M, Haensch R, Nehls U, Polle A, Schnitzler JP, Rennenberg H, Gessler A (2007) Interaction of nitrogen nutrition and salinity in grey poplar (Populus tremula X alba). Plant, Cell Environ 30:796–811

    Article  CAS  PubMed  Google Scholar 

  • Einhellig FA, Galindo JCG, Molinillo JMG, Cutler HG (2004) Mode of allelochemical action of phenolic compounds. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Espinosa-Rodríguez CA, Sarma SSS, Nandini S (2017) Effect of the allelochemicals from the macrophyte Egeria densa on the competitive interactions of pelagic and littoral cladocerans. Chem Ecol 33:247–256

    Article  Google Scholar 

  • Euring D, Janz D, Polle A (2021) Wood properties and transcriptional responses of poplar hybrids in mixed crop** with the nitrogen-fixing species Robinia pseudoacacia. Tree Physiol 41:865–881

    Article  CAS  PubMed  Google Scholar 

  • Fang S, Liu D, Tian Y, Deng S, Shang X (2013) Tree species composition influences enzyme activities and microbial biomass in the rhizosphere: a rhizobox approach. PLoS ONE 8:e61461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fellenberg C, Corea O, Yan LH, Archinuk F, Piirtola EM, Gordon H, Reichelt M, Brandt W, Wulff J, Ehlting J, Constabel CP (2020) Discovery of salicyl benzoate UDP-glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis. Plant J 102:99–115

    Article  CAS  PubMed  Google Scholar 

  • Fernandez M, Malagoli P, Gallet C, Fernandez C, Vernay A, Améglio T, Balandier P (2021) Investigating the role of root exudates in the interaction between oak seedlings and purple moor grass in temperate forest. For Ecol Manag 491:119175

    Article  Google Scholar 

  • Gordon H, Fellenberg C, Lackus ND, Archinuk F, Sproule A, Nakamura Y, Kollner TG, Gershenzon J, Overy DP, Constabel CP (2022) CRISPR/Cas9 disruption of UGT71L1 in poplar connects salicinoid and salicylic acid metabolism and alters growth and morphology. Plant Cell 34:2925–2947

    Article  PubMed Central  Google Scholar 

  • Hachani C, Abassi M, Lazhar C, Lamhamedi MS, Be´jaoui Z (2019) Allelopathic effects of leachates of Casuarina glauca Sieb. ex Spreng. and Populus nigra L. on germination and seedling growth of Triticum durum Desf. under laboratory conditions. Agrofor Syst 93:1973–1983

    Article  Google Scholar 

  • He L, Ye J, Wu B, Huang L, Ren J, Wu X (2018) Effects of genetically modified Burkholderia pyrrocinia JK-SH007E1 on soil microbial community in poplar rhizosphere. Forest Pathol 48:e12430

    Article  Google Scholar 

  • Huang Y, Arab T, Russell AE, Mallick ER, Nagaraj R, Gizzie E, Redding-Ochoa J, Troncoso JC, Pletnikova O, Turchinovich A, Routenberg DA, Witwer KW (2023) Toward a human brain extracellular vesicle atlas: Characteristics of extracellular vesicles from different brain regions, including small RNA and protein profiles. Interdiscip Med 1:e20230016

    Article  Google Scholar 

  • Huang W, Sun D, Wang R, An Y (2021) Integration of transcriptomics and metabolomics reveals the responses of sugar beet to continuous crop** obstacle. Front Plant Sci 12:711333

    Article  PubMed Central  Google Scholar 

  • Inayat N, Muhammad Z, KhanRehmanullah RR, Majeed A (2019) Suppressive effect of Populus nigra L. leaves on germination and growth competence of Triticum aestivum L. Pak J Bot 51:1323–1330

    Article  CAS  Google Scholar 

  • Inderjit, ChengNishimura HHH (1999) Plant phenolics and terpenoids: transformation, degradation, and potential for allelopathic interactions. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Ji L, Yang LX (2017) Effect of soil phenolic acids on soil microbe of coal-mining depressed land after afforestation restoration by different tree species. J Appl Ecol 28:4017–4024

    Google Scholar 

  • Jiao X, Takishita Y, Zhou G, Smith DL (2021) Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front Plant Sci 12:634796

    Article  PubMed Central  Google Scholar 

  • ** X, Shi YJ, Tan SC, Ma CL, Wu F, Pan K, Zhou X (2019) Effects of cucumber root exudates components on soil bacterial community structure and abundance. Allelopath J 48:167–174

    Article  Google Scholar 

  • **g DW, Liu FC, Wang MY, Ma HL, Du ZY, Ma BY, Dong YF (2017) Effects of root pruning on the physicochemical properties and microbial activities of poplar rhizosphere soil. PLoS ONE 12:e0187685

    Article  PubMed Central  Google Scholar 

  • Kato-Noguchi H (2023) Isolation and identification of allelochemicals and their activities and functions. J Pestic Sci 49:D23-052

    Google Scholar 

  • Kato-Noguchi H, Ino T (2013) The chemical-mediated allelopathic interaction between rice and barnyard grass. Plant Soil 370:267–275

    Article  CAS  Google Scholar 

  • Kaushal R, Verma KS, Singh KN (2003) Effect of Grewia optiva and Populus deltoides leachates on field crops. Allelopath J 11:229–234

    Google Scholar 

  • Keech O, Carcaillet C, Nilsson MC (2005) Adsorption of allelopathic compounds by wood-derived charcoal: the role of wood porosity. Plant Soil 272:291–300

    Article  CAS  Google Scholar 

  • Khaket TP, Kumar V, Singh J, Dhanda S (2014) Biochemical and physiological studies on the effects of senescence leaves of Populus deltoides on Triticum vulgare. Sci World J 2014:126051–126057

    Article  Google Scholar 

  • Khamare Y, Chen J, Marble SC (2022) Allelopathy and its application as a weed management tool: a review. Front Plant Sci 13:1034649

    Article  PubMed Central  Google Scholar 

  • Khan MI, Khan I, Khan R, Ahmad I, Hashmatullah H (2015) Allelopathic effect of aqueous extracts of four weed species on germination of some crops. Philipp Agric Sci 98:328–332

    Google Scholar 

  • Khan MI, Begum RA, Franková L, Fry SC (2023) Allelochemical root-growth inhibitors in low-molecular-weight cress-seed exudate. Ann Bot. https://doi.org/10.1093/aob/mcad200

    Article  Google Scholar 

  • Kong C, Li H, Hu F, Xu X, Wang P (2006) Allelochemicals released by rice roots and residues in soil. Plant Soil 288:47–56

    Article  CAS  Google Scholar 

  • Kong CH, Wang P, Gu Y, Xu XH, Wang ML (2008) Fate and impact on microorganisms of rice allelochemicals in paddy soil. J Agric Food Chem 56:5043–5049

    Article  CAS  Google Scholar 

  • Kulasekaran S, Cerezo Medina S, Harflett C, Lomax C, de Jong F, Rendour A, Ruvo G, Hanley SJ, Beale MH, Ward JL (2021) A willow UDP-glycosyltransferase involved in salicinoid biosynthesis. J Exp Bot 72:1634–1648

    Article  CAS  Google Scholar 

  • Lebedev VG, Krutovsky KV, Shestibratov KA (2019) Fell Upas sits, the hydra-tree of death, or the phytotoxicity of trees. Molecules 24:1636

    Article  CAS  PubMed Central  Google Scholar 

  • Li H (2016) The effects of phenolic acids concentration and nitrogen forms on photosynthesis and nitrogenous metabolism of Populus × euramericana ‘Neva.’ Shandong Agricultural University, Shandong, China ((in Chinese))

    Google Scholar 

  • Li S, Zhou J, Wang H, Chen X (2002) Research surveys of allelopathy in plants. Chin J Eco-Agric 10:68–70 ((in Chinese))

    Google Scholar 

  • Li GE, Wu XQ, Ye JR, Hou L, Zhou AD, Zhao L (2013) Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and masson pine. World J Microbiol Biotechnol 29:2181–2193

    Article  CAS  Google Scholar 

  • Li H, **e H, Du Z, **ng X, Zhao J, Guo J, Liu X, Zhang S (2018a) The effects of phenolic acid on nitrogen metabolism in Populus × euramericana ‘Neva.’ J for Res 29:925–931

    Article  CAS  Google Scholar 

  • Li Y, Zhang L, Fang S, Tian Y, Guo J (2018b) Variation of soil enzyme activity and microbial biomass in poplar plantations of different genotypes and stem spacings. J for Res 29:963–972

    Article  CAS  Google Scholar 

  • Li K, Zhang T, Li H, Zhang LD, Li F (2020) Phenolic acids inhibit the photosynthetic productivity of poplar. Photosynthetica 58:1210–1216

    Article  CAS  Google Scholar 

  • Li M, Wang Y, **ao J, Yan X, Liu B (2023) Allelopathic inhibition effects and mechanism of phenolic acids to Microcystis aeruginosa. Environ Sci Pollut Res 30:45388–45397

    Article  CAS  Google Scholar 

  • Liang GT, Zhang SY, Guo J, Yang R, Li H, Fang XC, Zhang GC (2018) The effects of para-hydroxybenzoic acid treatment on photosynthetic parameters of Populus × euramericana ‘Neva.’ Photosynthetica 56:505–511

    Article  CAS  Google Scholar 

  • Liang G, Guo J, Zhang S, Zhang G (2020) Integration of small RNAs, degradome, and transcriptome sequencing in Populus × euramericana ‘Neva’ provides insights into the allelopathic interference of para-hydroxybenzoic acid. Can J for Res 50:422–437

    Article  CAS  Google Scholar 

  • Liang G, Guo J, Zhang S, Zhang G (2021) Transcriptome and degradome sequencing reveals changes in Populus × euramericana ‘Neva’ caused by its allelopathic response to p-hydroxybenzoic acid. J for Res 32:2155–2168

    Article  CAS  Google Scholar 

  • Liu Y, Do S, Huynh H, Li JX, Liu YG, Du ZY, Chen MX (2024) Importance of pre-mRNA splicing and its study tools in plants. Adv Biotechnol 2:4

    Article  Google Scholar 

  • Liu D, Fang S, Tian Y, Dun X (2014) Seasonal and clonal variations of microbial biomass and processes in the rhizosphere of poplar plantations. Appl Soil Ecol 78:65–72

    Article  Google Scholar 

  • Liu CLC, Kuchma O, Krutovsky KV (2018) Mixed-species versus monocultures in plantation forestry: development, benefits, ecosystem services and perspectives for the future. Glob Ecol Conserv 15:e00419

    Google Scholar 

  • Liu YH, Sen Zeng R, An M, Mallik AU, Luo SM (2004) Autotoxicity in agriculture and forestry. In: International symposium on allelopathy research and application, Sanshui, Guangdong, China pp 283–301

  • Liu Y, Wang H, Qian X, Gu J, Chen W, Shen X, Tao S, Jiao S, Wei G (2023) Metagenomics insights into responses of rhizobacteria and their alleviation role in licorice allelopathy. Microbiome 11:109

    Article  CAS  PubMed Central  Google Scholar 

  • Lü LH, Wu QS (2018) Mitigation of replant disease by mycorrhization in horticultural plants: a review. Folia Horticulturae 30:269–282

    Article  Google Scholar 

  • Liu TY, Ye NH, Wang X, Das D, Tan YX, You X, Long M, Hu T, Dai L, Zhang JH, Chen MX (2021) Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath. J Integr Plant Biol 63:1753–1774

    Article  CAS  Google Scholar 

  • Lü W, Zhang C, Yuan F, Peng Y (2002) Mechanism of organic manure relieving the autotoxicity to continuous croppig cucumber. Acta Agric Shanghai 18:52–56

    Google Scholar 

  • Lu Q, Zhang J, Chen L (2020) Impact of monoculture of poplar on rhizosphere microbial communities over time. Pedosphere 30:487–495

    Article  Google Scholar 

  • Ma XS, Wang WB, Wang YP, Wang HT, Yi WH (2016) Characteristics of phosphate-solubilizing microbial community in the soil of poplar plantations under successive-planting and rotation. J Appl Ecol 27:1877–1885

    Google Scholar 

  • Ma D, Reichelt M, Yoshida K, Gershenzon J, Constabel CP (2018) Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. Plant J 96:949–965

    Article  CAS  Google Scholar 

  • Makoi J, Ndakidemi PA (2007) Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. Afr J Biotech 6:1358–1368

    CAS  Google Scholar 

  • Mallik AU (1997) Effect of phenolic compounds on selected soil properties. For Ecol Manage 92:11–18

    Article  Google Scholar 

  • Metlen KL, Aschehoug ET, Callaway RM (2009) Plant behavioural ecology: dynamic plasticity in secondary metabolites. Plant, Cell Environ 32:641–653

    Article  CAS  Google Scholar 

  • Molisch H (1937) Der einfluss einer pflanze auf die andere-allelopathie. Verlag von Gustav Fischer, Fischer, Jena ((in German))

    Google Scholar 

  • Moore PD (1985) Renewed interaction. Nature 314:648–648

    Article  Google Scholar 

  • Niu Y, Li J, Zhao Y, **n D, Gao X, Zhang S, Guo J (2023) PeMPK17 interacts with PeMKK7 and participates in para-hydroxybenzoic acid stress resistance by removing reactive oxygen species. Ecotoxicol Environ Saf 262:115167

    Article  CAS  Google Scholar 

  • Northup RR, Yu Z, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229

    Article  CAS  Google Scholar 

  • Olofsdotter M, Rebulanan M, Madrid A, Wang DL, Navarez D, Olk DC (2002) Why phenolic acids are unlikely primary allelochemicals in rice. J Chem Ecol 28:229–242

    Article  CAS  Google Scholar 

  • Orcutt DM, Nilsen ET, Hale MG (2001) The physiology of plants under stress, soil and biotic factors. John Wiley and Sons Inc, New York, NY, USA

    Google Scholar 

  • Peng S-L, Wen J, Guo Q-F (2004) Mechanism and active variety of allelochemicals. Acta Bot Sinica-Engl Edit 46:757–766

    Google Scholar 

  • Popovic BM, Stajner D, Zdero Pavlovic R, Tumbas Saponjac V, Canadanovic Brunet J, Orlovic S (2016) Water stress induces changes in polyphenol profile and antioxidant capacity in poplar plants (Populus spp.). Plant Physiol Biochem 105:242–250

    Article  CAS  Google Scholar 

  • Pramanik M, Nagai M, Asao T, Matsui Y (2000) Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. J Chem Ecol 26:1953–1967

    Article  CAS  Google Scholar 

  • Prati D, Bossdorf O (2004) Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am J Bot 91:285–288

    Article  Google Scholar 

  • Putnam AR (1983) Allelopathic chemicals: nature’s herbicides in action. Chem Eng News 61:34–45

    Article  CAS  Google Scholar 

  • Qu XH, Wang JG (2008) Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Appl Soil Ecol 39:172–179

    Article  Google Scholar 

  • Reigosa M, Gonzalezy L, Souto X, Pastoriza J (2000) Allelopathy in forest ecosystems. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM (2011) Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc Natl Acad Sci USA 108:18524–18529

    Article  CAS  PubMed Central  Google Scholar 

  • Schandry N, Becker C (2020) Allelopathic plants: models for studying plant–interkingdom interactions. Trends Plant Sci 25:176–185

    Article  CAS  Google Scholar 

  • Sher Z, Hussain F, Ahmad B, Wahab M (2011) Allelopathic potential of Populus euphratica Olivier. Pak J Bot 43:1899–1903

    Google Scholar 

  • Shibu J, Eric H (2008) Black walnut allelopathy: implications for intercrop**. Springer, New York, USA

    Google Scholar 

  • Singh H, Batish DR, Kohli R (1999) Autotoxicity: concept, organisms, and ecological significance. Crit Rev Plant Sci 18:757–772

    Article  CAS  Google Scholar 

  • Singh HP, Kohli RK, Batish DR (2001) Allelopathic interference of Populus deltoides with some winter season crops. Agronomie 21:139–146

    Article  Google Scholar 

  • Song YC, Das D, Zhang Y, Chen MX, Fernie AR, Zhu FY, Han J (2023) Proteogenomics-based functional genome research: approaches, applications, and perspectives in plants. Trends Biotechnol 41:1532–1548

    Article  CAS  Google Scholar 

  • Sui J, Ji C, Wang X, Liu Z, Sa R, Hu Y, Wang C, Li Q, Liu X (2019) A plant growth-promoting bacterium alters the microbial community of continuous crop** poplar trees’ rhizosphere. J Appl Microbiol 126:1209–1220

    Article  CAS  Google Scholar 

  • Sui J, Yu Q, Yang K, Yang J, Li C, Liu X (2022) Effects of Bacillus subtilis T6–1 on the rhizosphere microbial community structure of continuous crop** poplar. Biology 11:791

    Article  CAS  PubMed Central  Google Scholar 

  • Terzi I, Kocacaliskan I, Demir Y (2013) Allelopathic effects of some tree leaf extracts on seed germination and seedling growth of turf grasses. J Environ Prot Ecol 14:1236–1243

    Google Scholar 

  • Thompson, Alonzo C (1985) The chemistry of allelopathy: biochemical interactions among plants. ACS Press, Washington DC, USA

    Book  Google Scholar 

  • Wang Y, Wang H, Tan X, Jiang Y, Kong L (2010) Comparison on rhizosphere effect of cultivar alternation and non-alternation continuous crop** poplar (Populus deltoids) plantation. Acta Ecol Sin 30:1379–1389 ((in Chinese))

    CAS  Google Scholar 

  • Wang Y, Wang H, Xu T, Ni G, Jiang Y (2013) Effects of exogenous phenolic acid on soil nutrient availability and enzyme activities in a poplar plantation. J Appl Ecol 24:667–674

    Google Scholar 

  • Wang R, Wang J, Xue Q, Tan L, Cai J, Wang H (2016a) Preliminary analysis of allelochemicals produced by the diatom Phaeodactylum tricornutum. Chemosphere 165:298–303

    Article  CAS  Google Scholar 

  • Wang W, Ma X, Dong Y, Wang H, Wang Y, Yi W (2016b) Community characteristics and degradation metabolism regulation of soil phenolic acid degrading bacteria in poplar plantations under continuous crop** and crop rotation. Chin J App Environ Biol 22:815–822 ((in Chinese))

    Google Scholar 

  • Wang W, Wang Y, Wang H, Ma X, Yi W (2016c) Effects of different continuous crop** and rotation of poplar plantation on soil nitrogen bacteria community and nitrogen metabolism. Scientia Silvae Sinicae 52:45–54 ((in Chinese))

    CAS  Google Scholar 

  • Wang Y, Li C, Wang Q, Wang H, Duan B, Zhang G (2016d) Environmental behaviors of phenolic acids dominated their rhizodeposition in boreal poplar plantation forest soils. J Soils Sediments 16:1858–1870

    Article  CAS  Google Scholar 

  • Wang C, Wei G, Lei X, Sun Y, Liang G, Guo J, Zhang S (2023) Proteomic analysis reveals allelopathic responsive mechanisms for para-hydroxybenzoic acid in poplars. Environ Exp Bot 206:105157

    Article  CAS  Google Scholar 

  • ** generations on each component biomass of poplar seedlings during different growth periods. Sci World J 2014:618421–618421

    Article  Google Scholar 

  • **a X, Gao K, **ng X, Yang R, Zhang S, Du Z, Guo J, Liu X (2018) A recommended rate for application of Chaetomium globosum ND35 fungus fertilizer on poplar plantations in China. J for Res 29:933–941

    Article  CAS  Google Scholar 

  • **a Z, He Y, Korpelainen H, Niinemets Ü, Li C (2023) Allelochemicals and soil microorganisms jointly mediate sex-specific belowground interactions in dioecious Populus cathayana. New Phytol 240:1519–1533

    Article  CAS  PubMed  Google Scholar 

  • **ao Z, Le C, Xu Z, Gu Z, Lv J, Shamsi IH (2017) Vertical leaching of allelochemicals affecting their bioactivity and the microbial community of soil. J Agric Food Chem 65:7847–7853

    Article  CAS  PubMed  Google Scholar 

  • **e D, Zhang G, **a X, Lang Y (2018a) Effects of phenolic acids on the growth and photosynthesis of Populus × euramericana ‘Neva.’ Acta Ecol Sin 38:1789–1798 ((in Chinese))

    CAS  Google Scholar 

  • **e DF, Zhang GC, **a XX, Lang Y, Zhang SY (2018b) The effects of phenolic acids on the photosynthetic characteristics and growth of Populus × euramericana cv. Neva seedlings. Photosynthetica 56:981–988

    Article  CAS  Google Scholar 

  • **e Z, Zhao S, Li Y, Deng Y, Shi Y, Chen X, Wang W (2023) Phenolic acid-induced phase separation and translation inhibition mediate plant interspecific competition. Nat Plants 9:1481–1499

    Article  CAS  Google Scholar 

  • Xu K, Chen L, Bian Y, **n J, Yang X (2019) Allelopathy of aqueous extract from Artemisia scoparia root on seed germination and seedling growth of four Agropyron plants. J Zhejiang Univ (agriculture and Life Sciences) 45:574–584

    Google Scholar 

  • Yan F, and Yang Z (2004) Allelochemicals in pre-cowing soils of continuous soybean crop** and their autointoxication. In: International symposium on allelopathy research and application. Sanshui, Guangdong, China, pp 271–281

  • Yang N, Ji L, Salahuddin, Yang Y, Yang L (2018) The influence of tree species on soil properties and microbial communities following afforestation of abandoned land in northeast China. Eur J Soil Biol 85:73–78

    Article  Google Scholar 

  • Yang L, **e Y, Yan W, He Z (2019) Effects of pepper tissue extracts on allelopathic effects of different vegetables and soil enzyme activities. In: IOP conference series: earth and environmental science 295: 012076

  • Yi W, Wang Y, Wang H, Ma X, Wang W (2016) Influences of phenolic acids on soil nitrification in poplar plantation. J Shandong Univ (natural Science) 51:27–35 ((in Chinese))

    CAS  Google Scholar 

  • Yu JQ (2001) Autotoxic potential of cucurbit crops: phenomenon, chemicals, mechanisms and means to overcome. J Crop Prod 4:335–348

    Article  CAS  Google Scholar 

  • Yu Z, Liu Z, Zhang Y, Wang Z (2022) The disease resistance potential of Trichoderma asperellum T-Pa2 isolated from Phellodendron amurense rhizosphere soil. J for Res 33:321–331

    Article  CAS  Google Scholar 

  • Zhang X, Liu Z, Tian N, Nhu Trung L, Zhu B, Bing Y (2015) Allelopathic effects of decomposed leaf litter from intercropped trees on rape. Turk J Agric for 39:898–908

    Article  CAS  Google Scholar 

  • Zhang Y, Ma X, **g R, Ma F, Guo J, Wang Y, Wang H (2019) Effects of successive-planting poplar plantation on soil microbial community. J Shandong Univ (natural Science) 54:36–46 ((in Chinese))

    Google Scholar 

  • Zhao J, Zheng Z, Guo B, Yang F, Yang Y (2020) Research progress in continuous crop** obstacle and productivity maintenance of poplar. World for Res 33:14–19

    Google Scholar 

  • Zhao Y, **n D, Lu W, Zong X, Niu Y, Guo X, Ma Y, Qiang W, Su H, Zhang S, Guo J (2022) PeMPK7 is induced in an ROS-dependent manner and confers poplar para-hydroxybenzoic acid stress resistance through the removal of ROS. Ind Crops Prod 182:114861

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by STI 2030 - Major Projects (2023ZD04056), Jiangsu Agricultural Science and Technology Innovation Fund (CX (21)2023), the Science Technology and Innovation Committee of Shenzhen (JCYJ20210324115408023), Major project of natural science research in colleges of Jiangsu Province (20KJA220001).

Funding

STI 2030 - Major Projects, 2023ZD04056, Fu-Yuan Zhu, Jiangsu Agricultural Science and Technology Innovation Fund, CX (21) 2023, Fu-Yuan Zhu, Collaborative Innovation Center for Water Treatment Technology and Materials, JCYJ20210324115408023, Mo-**an Chen, Major project of natural science research in colleges of Jiangsu Province, 20KJA220001, Fu-Yuan Zhu

Author information

Authors and Affiliations

Authors

Contributions

MXC, JGH and FYZ conceived the idea for the review. The manuscript content was developed and written collaboratively by TS, JXC, LMS, YCQ, MXC, JGH and FYZ.

Corresponding authors

Correspondence to Mo-**an Chen, Jian-Gang Han or Fu-Yuan Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, T., Chen, JX., Shan, LM. et al. Allelopathy research on the continuous crop** problem of poplar (populus). Phytochem Rev (2024). https://doi.org/10.1007/s11101-024-09948-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11101-024-09948-6

Keywords

Navigation