Log in

Chemical composition and nutritional function of olive (Olea europaea L.): a review

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The olive (Olea europaea L.) is a widely-distributed plant that originated in the Mediterranean region. Its fruit is commonly used to produce olive oil, table olives, and other by-products. The main nutrient of the olive fruit is fat, predominantly monounsaturated fatty acids (MUFA). Olives are also rich in carbohydrates, vitamins, and minerals. Increasing numbers of investigations show that the health benefits of the ‘Mediterranean diet’ are associated with lower incidences of chronic degenerative diseases and higher life expectancy. These benefits have been attributed to the dietary consumption of olive oil. Furthermore, epidemiological data suggest that phenolic components and other antioxidants in olive oil are responsible for some of these benefits. Remarkably, these minor components play significant roles in reducing the incidences of atherosclerosis, cardiovascular disease, neurodegenerative diseases, and certain types of cancer. We reviewed the main olive products and the nutritional composition of olive oil focusing on fatty acids, phenolic compounds, and other antioxidants. We also discuss the chief chemical constituents relevant to the biological activity of olive oil, the metabolism and bioavailability of olive oil phenolic compounds, and the antioxidant activity of metabolites. Finally, we outline recent advances, potential applications, and limitations of developments in the olive oil industry, aiming to provide a theoretical basis for further research and to broaden the prospect of its application to healthy diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams TH, Walzem RL, Smith DR, Tseng S, Smith SB (2010) Hamburger high in total, saturated and trans-fatty acids decreases HDL cholesterol and LDL particle diameter, and increases TAG, in mildly hypercholesterolaemic men. Br J Nutr 103:91–98

    Article  CAS  PubMed  Google Scholar 

  • Aiello A, Guccione GD, Accardi G, Caruso C (2015) What olive oil for healthy ageing? Maturitas 80:117–118

    Article  PubMed  Google Scholar 

  • Alagna F, Mariotti R, Panara F, Caporali S, Urbani S, Veneziani G, Perrotta G (2012) Olive phenolic compounds: metabolic and transcriptional profiling during fruit development. BMC Plant Biol 12:1–19

    Article  CAS  Google Scholar 

  • Alexandratos N (2006) The Mediterranean diet in a world context. Public Health Nutr 9:111–117

    Article  PubMed  Google Scholar 

  • Altınyay Ç, Altun ML (2006) HPLC analysis of oleuropein in Olea europaea L. Ankara Üniv Ecz Fak Derg 35:1–11

    Google Scholar 

  • Argyri AA, Nisiotou AA, Pramateftaki P, Doulgeraki AI, Panagou EZ, Tassou CC (2015) Preservation of green table olives fermented with lactic acid bacteria with probiotic potential under modified atmosphere packaging. LWT Food Sci Technol 62:783–790

    Article  CAS  Google Scholar 

  • Arslan D, Karabekir Y, Schreiner M (2013) Variations of phenolic compounds, fatty acids and some qualitative characteristics of Sarıulak olive oil as induced by growing area. Food Res Int 54:1897–1906

    Article  CAS  Google Scholar 

  • Atzeri A, Lucas R, Incani A, Peñalver P, Zafra-Gómez A, Melis MP, Deiana M (2016) Hydroxytyrosol and tyrosol sulfate metabolites protect against the oxidized cholesterol pro-oxidant effect in Caco-2 human enterocyte-like cells. Food Funct 7:337–346

    Article  CAS  PubMed  Google Scholar 

  • Ballus CA, Meinhart AD, de Souza Campos FA, da Silva LFDO, de Oliveira AF, Godoy HT (2014) A quantitative study on the phenolic compound, tocopherol and fatty acid contents of monovarietal virgin olive oils produced in the southeast region of Brazil. Food Res Int 62:74–83

    Article  CAS  Google Scholar 

  • Beauchamp GK, Keast RS, Morel D, Lin J, Pika J, Han Q, Breslin PA (2005) Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. Nature 437(7055):45–46

    Article  CAS  PubMed  Google Scholar 

  • Beltrán G, del Rio C, Sánchez S, Martínez L (2004) Influence of harvest date and crop yield on the fatty acid composition of virgin olive oils from cv. Picual. J Agric Food Chem 52:3434–3440

    Article  PubMed  CAS  Google Scholar 

  • Beltrán G, Jiménez A, del Rio C, Sánchez S, Martínez L, Uceda M, Aguilera MP (2010) Variability of vitamin E in virgin olive oil by agronomical and genetic factors. J Food Compos Anal 23:633–639

    Article  CAS  Google Scholar 

  • Berenguer MJ, Vossen PM, Grattan SR, Connell JH, Polito VS (2006) Tree irrigation levels for optimum chemical and sensory properties of olive oil. Hortscience Publ Am Soc Hortic Sci 41:427–432

    CAS  Google Scholar 

  • Bindels LB, Delzenne NM, Cani PD, Walter J (2015) Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 12:303–310

    Article  CAS  PubMed  Google Scholar 

  • Bock M, Thorstensen EB, Derraik JG, Henderson HV, Hofman PL, Cutfield WS (2013) Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol Nutr Food Res 57:2079–2085

    Article  CAS  PubMed  Google Scholar 

  • Bohn T (2014) Dietary factors affecting polyphenol bioavailability. Nutr Rev 72:429–452

    Article  PubMed  Google Scholar 

  • Boskou D (2015) Olive and olive oil bioactive constituents. Elsevier, Amsterdam

    Google Scholar 

  • Carbonell-Capella JM, Buniowska M, Barba FJ, Esteve MJ, Frígola A (2014) Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: a review. Compr Rev Food Sci Food Saf 13:155–171

    Article  CAS  Google Scholar 

  • Cárdeno A, Sánchez-Hidalgo M, Alarcón-De-La-Lastra C (2013) An up-date of olive oil phenols in inflammation and cancer: molecular mechanisms and clinical implications. Curr Med Chem 20:4758–4776

    Article  PubMed  CAS  Google Scholar 

  • Catalán Ú, López de las Hazas MC, Rubió L, Fernández-Castillejo S, Pedret A, la Torre R, Solà R (2015) Protective effect of hydroxytyrosol and its predominant plasmatic human metabolites against endothelial dysfunction in human aortic endothelial cells. Mol Nutr Food Res 59:2523–2536

    Article  PubMed  CAS  Google Scholar 

  • Çetinkaya H, Koc M, Kulak M (2016) Monitoring of mineral and polyphenol content in olive leaves under drought conditions: application chemometric techniques. Ind Crops Prod 2016(88):78–84

    Article  CAS  Google Scholar 

  • Chen H, Angiuli M, Ferrari C, Tombari E, Salvetti G, Bramanti E (2011) Tocopherol speciation as first screening for the assessment of extra virgin olive oil quality by reversed-phase high-performance liquid chromatography/fluorescence detector. Food Chem 125:1423–1429

    Article  CAS  Google Scholar 

  • Cheng P, Wang J, Shao W (2016) Monounsaturated fatty acid intake and stroke risk: a meta-analysis of prospective cohort studies. J Stroke Cerebrovasc Dis 25(6):1326–1334

    Article  PubMed  Google Scholar 

  • Cicerale S, Lucas L, Keast R (2010) Biological activities of phenolic compounds present in virgin olive oil. Int J Mol Sci 11:458–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirilli M, Bellincontro A, Urbani S, Servili M, Esposto S, Mencarelli F, Muleo R (2016) On-field monitoring of fruit ripening evolution and quality parameters in olive mutants using a portable NIR-AOTF device. Food Chem 199:96–104

    Article  CAS  PubMed  Google Scholar 

  • Condelli N, Caruso MC, Galgano F, Russo D, Milella L, Favati F (2015) Prediction of the antioxidant activity of extra virgin olive oils produced in the Mediterranean area. Food Chem 177:233–239

    Article  CAS  PubMed  Google Scholar 

  • Corona G, Spencer JPE, Dessi MA (2009) Extra virgin olive oil phenolics: absorption, metabolism, and biological activities in the GI tract. Toxicol Ind Health 25:285–293

    Article  CAS  PubMed  Google Scholar 

  • D’Archivio M, Filesi C, Varì R, Scazzocchio B, Masella R (2010) Bioavailability of the polyphenols: status and controversies. Int J Mol Sci 11:1321–1342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De la Torre R (2008) Bioavailability of olive oil phenolic compounds in humans. Inflammopharmacology 16:245–247

    Article  PubMed  CAS  Google Scholar 

  • De la Torre-Carbot K, Jauregui O, Gimeno E, Castellote AI, Lamuela-Raventós RM, López-Sabater MC (2005) Characterization and quantification of phenolic compounds in olive oils by solid-phase extraction, HPLC-DAD, and HPLC-MS/MS. J Agric Food Chem 53:4331–4340

    Article  PubMed  CAS  Google Scholar 

  • De la Torre-Carbot K, Chávez-Servín JL, Jaúregui O, Castellote AI, Lamuela-Raventós RM, Fitó M, López-Sabater MC (2007) Presence of virgin olive oil phenolic metabolites in human low density lipoprotein fraction: determination by high-performance liquid chromatography–electrospray ionization tandem mass spectrometry. Anal Chim Acta 583:402–410

    Article  PubMed  CAS  Google Scholar 

  • De las Hazas MCL, Piñol C, Macià A, Romero MP, Pedret A, Solà R, Motilva MJ (2016) Differential absorption and metabolism of hydroxytyrosol and its precursors oleuropein and secoiridoids. J Funct Foods 22:52–63

    Article  CAS  Google Scholar 

  • de las López Hazas MC, Rubió L, Kotronoulas A, Torre R, Solà R, Motilva MJ (2015) Dose effect on the uptake and accumulation of hydroxytyrosol and its metabolites in target tissues in rats. Mol Nutr Food Res 59:1395–1399

    Article  CAS  Google Scholar 

  • Deiana M, Incani A, Rosa A, Corona G, Atzeri A, Loru D, Dessì MA (2008) Protective effect of hydroxytyrosol and its metabolite homovanillic alcohol on H2O2 induced lipid peroxidation in renal tubular epithelial cells. Food Chem Toxicol 46:2984–2990

    Article  CAS  PubMed  Google Scholar 

  • Di Benedetto R, Varì R, Scazzocchio B, Filesi C, Santangelo C, Giovannini C, Masella R (2007) Tyrosol, the major extra virgin olive oil compound, restored intracellular antioxidant defences in spite of its weak antioxidative effectiveness. Nutr Metab Cardiovasc Dis 17:535–545

    Article  PubMed  CAS  Google Scholar 

  • Domínguez-Perles R, Auñón D, Ferreres F, Gil-Izquierdo A (2015) Gender differences in plasma and urine metabolites from Sprague–Dawley rats after oral administration of normal and high doses of hydroxytyrosol, hydroxytyrosol acetate, and DOPAC. Eur J Nutr 56:215–224

    Article  PubMed  CAS  Google Scholar 

  • EFSA Panel on Dietetic Products NaAN (2011) Scientific opinion on the substantiation of health claims related to olive oil and maintenance of normal blood LDL-cholesterol concentrations (ID 1316, 1332), maintenance of normal (fasting) blood concentrations of triglycerides (ID 1316, 1332), maintenance of normal blood HDL-cholesterol concentrations (ID 1316, 1332) and maintenance of normal blood glucose concentrations (ID 4244) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 9:2044

    Article  CAS  Google Scholar 

  • Erol Ö, Arda N, Erdem G (2012) Phenols of virgin olive oil protects nuclear DNA against oxidative damage in HeLa cells. Food Chem Toxicol 50:3475–3479

    Article  CAS  PubMed  Google Scholar 

  • Esteves da Silva JCG (2010) Chemometric classification of cultivars of olives: perspectives on portuguese olives-olives and olive oil in health and disease prevention. Olives Olive Oil Health Dis Prev: 33–42

  • Franco MN, Galeano-Díaz T, López Ó, Fernández-Bolaños JG, Sánchez J, De Miguel C, Martín-Vertedor D (2014) Phenolic compounds and antioxidant capacity of virgin olive oil. Food Chem 163:289–298

    Article  CAS  PubMed  Google Scholar 

  • Fung TT, Rexrode KM, Mantzoros CS, Manson JE, Willett WC, Hu FB (2009) Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation 119:1093–1100

    Article  PubMed  PubMed Central  Google Scholar 

  • Galanakis CM (2011) Olive fruit dietary fiber: components, recovery and applications. Trends Food Sci Technol 22:175–184

    Article  CAS  Google Scholar 

  • Gandul-Rojas B, Gallardo-Guerrero L (2014) Pigment changes during processing of green table olive specialities treated with alkali and without fermentation. Food Res Int 65:224–230

    Article  CAS  Google Scholar 

  • García A, Romero C, Medina E, García P, De CA, Brenes M (2008) Debittering of olives by polyphenol oxidation. J Agric Food Chem 56(24):11862–11867

    Article  PubMed  CAS  Google Scholar 

  • García-Inza GP, Castro DN, Hall AJ, Rousseaux MC (2016) Opposite oleic acid responses to temperature in oils from the seed and mesocarp of the olive fruit. Eur J Agron 76:138–147

    Article  CAS  Google Scholar 

  • García-Villalba R, Carrasco-Pancorbo A, Nevedomskaya E, Mayboroda OA, Deelder AM, Segura-Carretero A, Fernández-Gutiérrez A (2010) Exploratory analysis of human urine by LC-ESI-TOF MS after high intake of olive oil: understanding the metabolism of polyphenols. Anal Bioanal Chem 398:463–475

    Article  PubMed  CAS  Google Scholar 

  • Giordano E, Davalos A, Visioli F (2014) Chronic hydroxytyrosol feeding modulates glutathione-mediated oxido-reduction pathways in adipose tissue: a nutrigenomic study. Nutr Metab Cardiovasc Dis 24:1144–1150

    Article  CAS  PubMed  Google Scholar 

  • Giordano E, Dangles O, Rakotomanomana N, Baracchini S, Visioli F (2015) 3-O-Hydroxytyrosol glucuronide and 4-O-hydroxytyrosol glucuronide reduce endoplasmic reticulum stress in vitro. Food Funct 6:3275–3281

    Article  CAS  PubMed  Google Scholar 

  • Giuliani A, Cerretani L, Cichelli A (2011) Chlorophylls in olive and in olive oil: chemistry and occurrences. Crit Rev Food Sci Nutr 51:678–690

    Article  CAS  PubMed  Google Scholar 

  • Gomes VPM, Torres C, Rodríguez-Borges JE, Paiva-Martins F (2015) A Convenient Synthesis of Hydroxytyrosol Monosulfate Metabolites. J Agric Food Chem 63:9565–9571

    Article  CAS  PubMed  Google Scholar 

  • Grounta A, Doulgeraki AI, Panagou EZ (2015) Quantification and characterization of microbial biofilm community attached on the surface of fermentation vessels used in green table olive processing. Int J Food Microbiol 203:41–48

    Article  CAS  PubMed  Google Scholar 

  • Habibi M, Golmakani MT, Mesbahi G, Majzoobi M, Farahnaky A (2015) Ultrasound-accelerated debittering of olive fruits. Innov Food Sci Emerg Technol 31:105–115

    Article  Google Scholar 

  • Harris WS (2008) Linoleic acid and coronary heart disease. Prostaglandins Leukot Essent Fatty Acids 79:169–171

    Article  CAS  PubMed  Google Scholar 

  • Hioki H, Miura T, Miyashita Y, Ebisawa S, Motoki H, Izawa A, Ikeda U (2016) circulating eicosapentaenoic acid to oleic acid ratio and risk for cardiovascular events in patients with coronary artery disease: a sub-analysis of the SHINANO registry. Ijc Metab Endocr 10:1–6

    Article  Google Scholar 

  • Incani A, Deiana M, Corona G, Vafeiadou K, Vauzour D, Dessì MA, Spencer JP (2010) Involvement of ERK, Akt and JNK signalling in H2O2-induced cell injury and protection by hydroxytyrosol and its metabolite homovanillic alcohol. Mol Nutr Food Res 54:1–16

    Google Scholar 

  • Jacomelli M, Pitozzi V, Zaid M, Larrosa M, Tonini G, Martini A, Giovannelli L (2010) Dietary extra-virgin olive oil rich in phenolic antioxidants and the aging process: long-term effects in the rat. J Nutr Biochem 21:290–296

    Article  CAS  PubMed  Google Scholar 

  • Jilani H, Cilla A, Barberá R, Hamdi M (2016) Improved bioaccessibility and antioxidant capacity of olive leaf (Olea europaea L.) polyphenols through biosorption on Saccharomyces cerevisiae. Ind Crops Prod 84:131–138

    Article  CAS  Google Scholar 

  • Jiménez A, Rodríguez R, Fernández-Caro I, Guillén R, Fernández-Bolaños J, Heredia A (2001) Olive fruit cell wall: degradation of cellulosic and hemicellulosic polysaccharides during ripening. J Agric Food Chem 49:2008–2013

    Article  PubMed  CAS  Google Scholar 

  • Jolayemi OS, Tokatli F, Ozen B (2016) Effects of malaxation temperature and harvest time on the chemical characteristics of olive oils. Food Chem 211:776–783

    Article  CAS  PubMed  Google Scholar 

  • Khalatbary AR (2013) Olive oil phenols and neuroprotection. Nutr Neurosci 16:243–249

    Article  CAS  PubMed  Google Scholar 

  • Khaleghi E, Arzani K, Moallemi N, Barzegar M (2015) The efficacy of kaolin particle film on oil quality indices of olive trees (Olea europaea L.) cv ‘Zard’ grown under warm and semi-arid region of Iran. Food Chem 166:35–41

    Article  CAS  PubMed  Google Scholar 

  • Khymenets O, Fitó M, Touriño S, Muñoz-Aguayo D, Pujadas M, Torres JL, de La Torre R (2010) Antioxidant activities of hydroxytyrosol main metabolites do not contribute to beneficial health effects after olive oil ingestion. Drug Metab Dispos 38:1417–1421

    Article  CAS  PubMed  Google Scholar 

  • Khymenets O, Farré M, Pujadas M, Ortiz E, Joglar J, Covas MI, De La Torre R (2011) Direct analysis of glucuronidated metabolites of main olive oil phenols in human urine after dietary consumption of virgin olive oil. Food Chem 126:306–314

    Article  CAS  Google Scholar 

  • Khymenets O, Crespo MC, Dangles O, Rakotomanomana N, Andres-Lacueva C, Visioli F (2016) Human hydroxytyrosol’s absorption and excretion from a nutraceutical. J Funct Foods 23:278–282

    Article  CAS  Google Scholar 

  • Kotsiou K, Tasioula-Margari M (2016) Monitoring the phenolic compounds of Greek extra-virgin olive oils during storage. Food Chem 200:255–262

    Article  CAS  PubMed  Google Scholar 

  • Lama-Muñoz A, Alvarez-Mateos P, Rodríguez-Gutiérrez G, Durán-Barrantes MM, Fernández-Bolaños J (2014) Biodiesel production from olive-pomace oil of steam-treated alperujo. Biomass Bioenerg 67:443–450

    Article  CAS  Google Scholar 

  • Landete JM (2011) Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Res Int 44:1150–1160

    Article  CAS  Google Scholar 

  • López-Escudero FJ, Blanco-López MA (2005) Effects of drip irrigation on population of Verticillium dahliae in olive orchards. J Phytopathol 153:238–239

    Article  Google Scholar 

  • Lopez-Huertas E (2010) Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. Pharmacol Res 61:200–207

    Article  CAS  PubMed  Google Scholar 

  • Luaces P, Pérez AG, García JM, Sanz C (2005) Effects of heat-treatments of olive fruit on pigment composition of virgin olive oil. Food Chem 90:169–174

    Article  CAS  Google Scholar 

  • Mafra I, Coimbra MA, Kilcast D (2004) Improving the texture of processed fruit: the case of olives. Texture Food Solid Foods: 410–431

  • Martínez-Martos JM, Mayas MD, Carrera P, de Saavedra JMA, Sánchez-Agesta R, Arrazola M, Ramírez-Expósito MJ (2014) Phenolic compounds oleuropein and hydroxytyrosol exert differential effects on glioma development via antioxidant defense systems. J Funct Foods 11:221–234

    Article  CAS  Google Scholar 

  • Martorana A, Alfonzo A, Settanni L, Corona O, La Croce F, Caruso T, Francesca N (2015) An innovative method to produce green table olives based on “pied de cuve” technology. Food Microbiol 50:126–140

    Article  CAS  PubMed  Google Scholar 

  • Mateos R, Martínez-López S, Arévalo GB, Amigo-Benavent M, Sarriá B, Bravo-Clemente L (2016) Hydroxytyrosol in functional hydroxytyrosol-enriched biscuits is highly bioavailable and decreases oxidised low density lipoprotein levels in humans. Food Chem 205:248–256

    Article  CAS  PubMed  Google Scholar 

  • Mínguez-Mosquera I, Gallardo-Guerrero L (1995) Disappearance of chlorophylls and carotenoids during ripening of the olive. J Sci Food Agric 69:1–6

    Article  Google Scholar 

  • Monfreda M, Gobbi L, Grippa A (2012) Blends of olive oil and sunflower oil: characterisation and olive oil quantification using fatty acid composition and chemometric tools. Food Chem 134:2283–2290

    Article  CAS  PubMed  Google Scholar 

  • Monica D, Alessandra I, Antonella R, Angla A, Debora L, Barbara C, Dessi MA (2011) Hydroxytyrosol glucuronides protect renal tubular epithelial cells against H2O2 induced oxidative damage. Chem Biol Interact 193:232–239

    Article  CAS  Google Scholar 

  • Morales-Sillero A, García JM, Torres-Ruiz JM, Montero A, Sánchez-Ortiz A, Fernández JE (2013) Is the productive performance of olive trees under localized irrigation affected by leaving some roots in drying soil? Agric Water Manag 123:79–92

    Article  Google Scholar 

  • Neveu V, Perez-Jimenez J, Vos F, Crespy V, du Chaffaut L, Mennen L, Scalbert A (2010) Phenol-explorer: an online comprehensive database on polyphenol contents in foods. Database. 2010. bap024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obied HK, Prenzler PD, Omar SH, Ismael R, Servili M, Esposto S, Urbani S (2012) Pharmacology of olive biophenols. Adv Mol Toxicol 6:195–242

    Article  CAS  Google Scholar 

  • Oliveras-López MJ, Berná G, Jurado-Ruiz E, de la Serrana HLG, Martín F (2014) Consumption of extra-virgin olive oil rich in phenolic compounds has beneficial antioxidant effects in healthy human adults. J Funct Foods 10:475–484

    Article  CAS  Google Scholar 

  • Ouni Y, Taamalli A, Gómez-Caravaca AM, Segura-Carretero A, Fernández-Gutiérrez A, Zarrouk M (2011) Characterisation and quantification of phenolic compounds of extra-virgin olive oils according to their geographical origin by a rapid and resolutive LC–ESI-TOF MS method. Food Chem 127:1263–1267

    Article  CAS  PubMed  Google Scholar 

  • Özcan MM, Matthäus B (2017) A review: benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur Food Res Technol 243:89–99

    Article  CAS  Google Scholar 

  • Paiva-Martins F, Silva A, Almeida V, Carvalheira M, Serra C, Rodrígues-Borges JE, Santos-Silva A (2013) Protective activity of hydroxytyrosol metabolites on erythrocyte oxidative-induced hemolysis. J Agric Food Chem 61:6636–6642

    Article  CAS  PubMed  Google Scholar 

  • Paiva-Martins F, Gonçalves P, Borges JE, Przybylska D, Ibba F, Fernandes J, Santos-Silva A (2015) Effects of the olive oil phenol metabolite 3, 4-DHPEA-EDAH 2 on human erythrocyte oxidative damage. Food Funct 6:2350–2356

    Article  CAS  PubMed  Google Scholar 

  • Pan S, Liu L, Pan H, Ma Y, Wang D, Kang K, Jiang H (2013) Protective effects of hydroxytyrosol on liver ischemia/reperfusion injury in mice. Mol Nutr Food Res 57:1218–1227

    Article  CAS  PubMed  Google Scholar 

  • Papadaki E, Mantzouridou FT (2016) Current status and future challenges of Table olive processing wastewater valorization. Biochem Eng J 112:103–113

    Article  CAS  Google Scholar 

  • Papageorgiou N, Tousoulis D, Psaltopoulou T, Giolis A, Antoniades C, Tsiamis E, Stefanadis C (2011) Divergent anti-inflammatory effects of different oil acute consumption on healthy individuals. Eur J Clin Nutr 65:514–519

    Article  CAS  PubMed  Google Scholar 

  • Pastor A, Rodríguez-Morató J, Olesti E, Pujadas M, Pérez-Mañá C, Khymenets O, Farré M (2016) Analysis of free hydroxytyrosol in human plasma following the administration of olive oil. J Chromatogr A 1437:183–190

    Article  CAS  PubMed  Google Scholar 

  • Patumi M, Fontanazza G, Baldoni L, Brambilla I (1989) Determination of some precursors of lipid biosynthesis in olive fruits during ripening. Int Symp Olive Grow 286:199–202

    Google Scholar 

  • Pereira-Caro G, Sarriá B, Madrona A, Espartero JL, Escuderos ME, Bravo L, Mateos R (2012) Digestive stability of hydroxytyrosol, hydroxytyrosyl acetate and alkyl hydroxytyrosyl ethers. Int J Food Sci Nutr 63:703–707

    Article  CAS  PubMed  Google Scholar 

  • Peres F, Martins LL, Mourato M, Vitorino C, Antunes P, Ferreira-Dias S (2016) Phenolic compounds of ‘Galega Vulgar’ and ‘Cobrançosa’ olive oils along early ripening stages. Food Chem 211:51–58

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Rodríguez M, Orgaz F, Lorite IJ, López-Escudero FJ (2015) Effect of the irrigation doseticillium wilt of olive. Sci Hortic 197:564–567

    Article  Google Scholar 

  • Petousi I, Fountoulakis MS, Saru ML, Nikolaidis N, Fletcher L, Stentiford EI, Manios T (2015) Effects of reclaimed wastewater irrigation on olive (Olea europaea L. cv. ‘Koroneiki’) trees. Agric Water Manag 160:33–40

    Article  Google Scholar 

  • Piroddi M, Albini A, Fabiani R, Giovannelli L, Luceri C, Natella F et al (2016) Nutrigenomics of extra-virgin olive oil: a review. BioFactors 43:17–41

    Article  PubMed  CAS  Google Scholar 

  • Porrini M, Riso P (2008) Factors influencing the bioavailability of antioxidants in foods: a critical appraisal. Nutr Metab Cardiovasc Dis 18:647–650

    Article  PubMed  Google Scholar 

  • Portarena S, Farinelli D, Lauteri M, Famiani F, Esti M, Brugnoli E (2015) Stable isotope and fatty acid compositions of monovarietal olive oils: implications of ripening stage and climate effects as determinants in traceability studies. Food Control 57:129–135

    Article  CAS  Google Scholar 

  • Reddy KVK, Naidu KA (2016) Oleic acid, hydroxytyrosol and n-3 fatty acids collectively modulate colitis through reduction of oxidative stress and IL-8 synthesis; in vitro and in vivo studies. Int Immunopharmacol 35:29–42

    Article  CAS  PubMed  Google Scholar 

  • Rejano L (2010) Chemical composition of fermented green olives: acidity, salt, moisture, fat, protein, ash, fiber, sugar, and polyphenol. Elsevier, Amsterdam

    Google Scholar 

  • Rodríguez-Ramiro I, Martín MÁ, Ramos S, Bravo L, Goya L (2011) Olive oil hydroxytyrosol reduces toxicity evoked by acrylamide in human Caco-2 cells by preventing oxidative stress. Toxicology 288:43–48

    Article  PubMed  CAS  Google Scholar 

  • Romero C, Medina E, Vargas J, Brenes M, De Castro A (2007) In vitro activity of olive oil polyphenols against Helicobacter pylori. J Agric Food Chem 55:680–686

    Article  CAS  PubMed  Google Scholar 

  • Romero-García JM, Lama-Muñoz A, Rodríguez-Gutiérrez G, Moya M, Ruiz E, Fernández-Bolaños J, Castro E (2016) Obtaining sugars and natural antioxidants from olive leaves by steam-explosion. Food Chem 210:457–465

    Article  PubMed  CAS  Google Scholar 

  • Rondanini DP, Castro DN, Searles PS, Rousseaux MC (2014) Contrasting patterns of fatty acid composition and oil accumulation during fruit growth in several olive varieties and locations in a non-Mediterranean region. Eur J Agron 52:237–246

    Article  CAS  Google Scholar 

  • Rosecrance RC, Krueger WH, Milliron L, Bloese J, Garcia C, Mori B (2015) Moderate regulated deficit irrigation can increase olive oil yields and decrease tree growth in super high density ‘Arbequina’ olive orchards. Sci Hortic 190:75–82

    Article  Google Scholar 

  • Rothwell JA, Urpi-Sarda M, Boto-Ordonez M, Knox C, Llorach R, Eisner R, Andres-Lacueva C (2012) Phenol-explorer 2.0: a major update of the phenol-explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database. 2012. bas031

  • Rubió L, Macià A, Valls RM, Pedret A, Romero MP, Solà R, Motilva MJ (2012a) A new hydroxytyrosol metabolite identified in human plasma: hydroxytyrosol acetate sulphate. Food Chem 134:1132–1136

    Article  PubMed  CAS  Google Scholar 

  • Rubió L, Valls RM, Macià A, Pedret A, Giralt M, Romero MP, Motilva MJ (2012b) Impact of olive oil phenolic concentration on human plasmatic phenolic metabolites. Food Chem 135:2922–2929

    Article  PubMed  CAS  Google Scholar 

  • Rubió L, Serra A, Macià A, Piñol C, Romero MP, Motilva MJ (2014) In vivo distribution and deconjugation of hydroxytyrosol phase II metabolites in red blood cells: a potential new target for hydroxytyrosol. J Funct Foods 10:139–143

    Article  CAS  Google Scholar 

  • Ruotolo R, Calani L, Brighenti F, Crozier A, Ottonello S, Del Rio D (2014) Glucuronidation does not suppress the estrogenic activity of quercetin in yeast and human breast cancer cell model systems. Arch Biochem Biophys 559:62–67

    Article  CAS  PubMed  Google Scholar 

  • Sakouhi F, Harrabi S, Absalon C, Sbei K, Boukhchina S, Kallel H (2008) α-Tocopherol and fatty acids contents of some Tunisian table olives (Olea europea L.): changes in their composition during ripening and processing. Food Chem 108:833–839

    Article  CAS  PubMed  Google Scholar 

  • Salmerón J, Hu FB, Manson JE, Stampfer MJ, Colditz GA, Rimm EB, Willett WC (2001) Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr 73:1019–1026

    Article  PubMed  Google Scholar 

  • Santos MM, Piccirillo C, Castro PM, Kalogerakis N, Pintado ME (2012) Bioconversion of oleuropein to hydroxytyrosol by lactic acid bacteria. World J Microbiol Biotechnol 28:2435–2440

    Article  CAS  PubMed  Google Scholar 

  • Scoditti E, Capurso C, Capurso A, Massaro M (2014) Vascular effects of the Mediterranean diet-Part II: role of omega-3 fatty acids and olive oil polyphenols. Vascul Pharmacol 63:127–134

    Article  CAS  PubMed  Google Scholar 

  • Seiquer I, Rueda A, Olalla M, Cabrera-Vique C (2015) Assessing the bioavailability of polyphenols and antioxidant properties of extra virgin argan oil by simulated digestion and Caco-2 cell assays. Comparative study with extra virgin olive oil. Food Chem 188:496–503

    Article  CAS  PubMed  Google Scholar 

  • Servili M, Sordini B, Esposto S, Urbani S, Veneziani G, Di Maio I, Taticchi A (2013) Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 3:1–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suárez M, Valls RM, Romero MP, Macia A, Fernández S, Giralt M, Motilva MJ (2011) Bioavailability of phenols from a phenol-enriched olive oil. Br J Nutr 106:1691–1701

    Article  PubMed  CAS  Google Scholar 

  • Talhaoui N, Taamalli A, Gómez-Caravaca AM, Fernández-Gutiérrez A, Segura-Carretero A (2015) Phenolic compounds in olive leaves: analytical determination, biotic and abiotic influence, and health benefits. Food Res Int 77:92–108

    Article  CAS  Google Scholar 

  • Talhaoui N, Vezza T, Gómez-Caravaca AM, Fernández-Gutiérrez A, Gálvez J, Segura-Carretero A (2016) Phenolic compounds and in vitro immunomodulatory properties of three Andalusian olive leaf extracts. J Funct Foods 22:270–277

    Article  CAS  Google Scholar 

  • Terés S, Barceló-Coblijn G, Benet M, Alvarez R, Bressani R, Halver JE, Escribá PV (2008) Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci USA 105:13811–13816

    Article  PubMed  Google Scholar 

  • Tuck KL, Hayball PJ, Stupans I (2002) Structural characterization of the metabolites of hydroxytyrosol, the principal phenolic component in olive oil, in rats. J Agric Food Chem 50:2404–2409

    Article  CAS  PubMed  Google Scholar 

  • Valls RM, Soler A, Girona J, Heras M, Romero MP, Covas MI, Motilva MJ (2010) Effect of the long-term regular intake of virgin olive oil on the phenolic metabolites in human fasting plasma. J Pharm Biomed Anal 53:68–74

    Article  CAS  PubMed  Google Scholar 

  • Van Durme J, Vandamme J (2016) Non-thermal plasma as preparative technique to evaluate olive oil adulteration. Food Chem 208:185–191

    Article  PubMed  CAS  Google Scholar 

  • Vergara-Barberán M, Lerma-García MJ, Herrero-Martínez JM, Simó-Alfonso EF (2015) Use of an enzyme-assisted method to improve protein extraction from olive leaves. Food Chem 169:28–33

    Article  PubMed  CAS  Google Scholar 

  • Vergara-Domínguez H, Roca M, Gandul-Rojas B (2014) Thylakoid peroxidase activity responsible for oxidized chlorophyll accumulation during ripening of olive fruits (Olea europaea L.). Food Res Int 65:247–254

    Article  CAS  Google Scholar 

  • Visioli F, Bernardini E (2011) Extra virgin olive oil’s polyphenols: biological activities. Curr Pharm Des 17(8):786–804

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Sit WH, Tipoe GL, Wan JMF (2014a) Differential protective effects of extra virgin olive oil and corn oil in liver injury: a proteomic study. Food Chem Toxicol 74:131–138

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li H, Zheng A, Yang L, Liu J, Chen C, Zhang Y (2014b) Mitochondrial dysfunction-associated OPA1 cleavage contributes to muscle degeneration: preventative effect of hydroxytyrosol acetate. Cell Death Dis 5:e1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterman E, Lockwood B (2007a) Active components and clinical applications of olive oil. Altern Med Rev 12:331–343

    PubMed  Google Scholar 

  • Waterman E, Lockwood B (2007b) Active components and clinical applications of olive oil. Altern Med Rev J Clin Ther 12:331–342

    Google Scholar 

  • Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Bouatra S (2012) HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res 41:D801–D807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • **ao JB (2017) Dietary flavonoid aglycones and their glycosides: what show better biological benefits? Crit Rev Food Sci Nutr 57:1874–1905

    CAS  PubMed  Google Scholar 

  • **ao JB, Capanoglu E, Jassbi AR, Miron A (2016) Advance on the flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr 56:S29–S45

    Article  CAS  PubMed  Google Scholar 

  • **ao JB, Yordanova Z, Miao M (2017) 2nd international symposium on phytochemicals in medicine and food (2-ISPMF). Phytochem Rev 16:375–377

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baodong Zheng or Jianbo **ao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Jia, X., Zheng, Z. et al. Chemical composition and nutritional function of olive (Olea europaea L.): a review. Phytochem Rev 17, 1091–1110 (2018). https://doi.org/10.1007/s11101-017-9526-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-017-9526-0

Keywords

Navigation