Log in

Causal impact of statins on susceptibility to osteoarthritis: insights from a two-sample Mendelian randomization analysis

  • Research Article
  • Published:
International Journal of Clinical Pharmacy Aims and scope Submit manuscript

Abstract

Background

Osteoarthritis is a widely prevalent cause of pain and disability among older adults. It is an incurable condition, and most treatments are aimed at alleviating symptoms.

Aim

This study aimed to investigate the impact of statins on osteoarthritis by using a two-sample Mendelian randomization approach, using genetic variants associated with statin use as instrumental variables.

Method

Information on single nucleotide polymorphisms associated with statin medication was obtained from the FinnGen study, and data on osteoarthritis were sourced from the UK Biobank. The inverse variance weighted method was used as the primary analytical approach for the Mendelian randomization analysis. Sensitivity analyses were conducted to evaluate horizontal pleiotropy and heterogeneity. To examine the genetic relationship between statins and osteoarthritis, linkage disequilibrium score regression-based estimates were used.

Results

Mendelian randomization analysis indicated a positive effect of statin use on the treatment of osteoarthritis (odds ratio 0.951, 95% confidence interval 0.914–0.99, p < 0.05). This conclusion was supported by various Mendelian randomization methods. Sensitivity analyses revealed no significant directional pleiotropy or influential single nucleotide polymorphisms that could compromise the overall causal inference. Linkage disequilibrium score regression-based estimates suggested a modest genetic correlation between statin use and osteoarthritis (Rg = 0.098, Se = 0.034, p < 0.05), thus reinforcing the robustness of the Mendelian randomization analysis.

Conclusion

Statins reduce the risk of osteoarthritis, aligning with the results of observational studies. Further research is essential to validate these results and explore the underlying mechanisms in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Hawker GA. Osteoarthritis is a serious disease. Clin Exp Rheumatol. 2019;37:3–6.

    PubMed  Google Scholar 

  2. Gu Y, ** Q, Hu J, et al. Causality of genetically determined metabolites and metabolic pathways on osteoarthritis: a two-sample Mendelian randomization study. J Transl Med. 2023;21(1):357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bliddal H. Definition, pathology and pathogenesis of osteoarthritis. Ugeskr Laeger. 2020;182(42):V06200477.

    PubMed  Google Scholar 

  4. Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin North Am. 2020;104(2):293–311.

    Article  PubMed  Google Scholar 

  5. **e C, Chen Q. Adipokines: new therapeutic target for osteoarthritis? Curr Rheumatol Rep. 2019;21(12):71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nedunchezhiyan U, Varughese I, Sun AR, et al. Obesity, inflammation, and immune system in osteoarthritis. Front Immunol. 2022;13: 907750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Charlier E, Deroyer C, Ciregia F, et al. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol. 2019;165:49–65.

    Article  PubMed  Google Scholar 

  8. Kadam UT, Blagojevic M, Belcher J. Statin use and clinical osteoarthritis in the general population: a longitudinal study. J Gen Intern Med. 2013;28(7):943–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aspden RM, Scheven BA, Hutchison JD. Osteoarthritis as a systemic disorder including stromal cell differentiation and lipid metabolism. Lancet. 2001;357(9262):1118–20.

    Article  CAS  PubMed  Google Scholar 

  10. Dancevic CM, McCulloch DR. Current and emerging therapeutic strategies for preventing inflammation and aggrecanase-mediated cartilage destruction in arthritis. Arthritis Res Ther. 2014;16(5):429.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baker JF, Walsh P, Mulhall KJ. Statins: a potential role in the management of osteoarthritis? Joint Bone Spine. 2011;78(1):31–4.

    Article  CAS  PubMed  Google Scholar 

  12. Siddiq MAB, Jahan I, Rasker JJ. Statin in clinical and preclinical knee osteoarthritis-what e vidence exists for future clinical use?-A literature review. Curr Rheumatol Rev. 2023;19(3):270–80.

    Article  PubMed  Google Scholar 

  13. Gala H, Tomlinson I. The use of Mendelian randomisation to identify causal cancer risk factors: promise and limitations. J Pathol. 2020;250(5):541–54.

    Article  PubMed  Google Scholar 

  14. Ference BA, Holmes MV, Smith GD. Using Mendelian randomization to improve the design of randomized trials. Cold Spring Harb Perspect Med. 2021;11(7):a040980.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhou H, Qi Y, Xu Y, et al. Reverse causation between multiple sclerosis and psoriasis: a genetic correlation and Mendelian randomization study. Sci Rep. 2024;14(1):8845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ochoa D, Karim M, Ghoussaini M, et al. Human genetics evidence supports two-thirds of the 2021 FDA-approved drugs. Nat Rev Drug Discov. 2022;21(8):551.

    Article  CAS  PubMed  Google Scholar 

  17. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32(5):377–89.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tachmazidou I, Hatzikotoulas K, Southam L, et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat Genet. 2019;51(2):230–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bierma-Zeinstra S, van Middelkoop M, Runhaar J, et al. Nonpharmacological and nonsurgical approaches in OA. Best Pract Res Clin Rheumatol. 2020;34(2): 101564.

    Article  PubMed  Google Scholar 

  20. van der Woude D, van der Helm-van Mil AHM. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2018;32(2):174–87.

    Article  PubMed  Google Scholar 

  21. O’Neill TW, McCabe PS, McBeth J. Update on the epidemiology, risk factors and disease outcomes of osteoarthritis. Best Pract Res Clin Rheumatol. 2018;32(2):312–26.

    Article  PubMed  Google Scholar 

  22. Whittaker JL, Losciale JM, Juhl CB, et al. Risk factors for knee osteoarthritis after traumatic knee injury: a systematic review and meta-analysis of randomised controlled trials and cohort studies for the OPTIKNEE consensus. Br J Sports Med. 2022;56(24):1406–21.

    Article  PubMed  Google Scholar 

  23. Saberianpour S, Abolbashari S, Modaghegh MHS, et al. Therapeutic effects of statins on osteoarthritis: a review. J Cell Biochem. 2022;123(8):1285–97.

    Article  CAS  PubMed  Google Scholar 

  24. Heidari B, Babaei M, Yosefghahri B. Prevention of osteoarthritis progression by statins, targeting metabolic and inflammatory aspects: a review. Mediterr J Rheumatol. 2021;32(3):227–36.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hemani G, Bowden J, Haycock P, et al. Automating Mendelian randomization through machine learning to construct a putative causal map of the human phenome. bioRxiv;2017:173682 (preprint)

  26. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Szumilas M. Explaining odds ratios. J Can Acad Child Adolesc Psychiatry. 2010;19(3):227–9.

    PubMed  PubMed Central  Google Scholar 

  28. Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res. 2017;26(5):2333–55.

    Article  PubMed  Google Scholar 

  29. Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirota T, Fujita Y, Ieiri I. An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. Expert Opin Drug Metab Toxicol. 2020;16(9):809–22.

    Article  CAS  PubMed  Google Scholar 

  31. Wang J, Dong J, Yang J, et al. Association between statin use and incidence or progression of osteoarthritis: meta-analysis of observational studies. Osteoarthr Cartil. 2020;28(9):1170–9.

    Article  CAS  Google Scholar 

  32. Assirelli E, Pulsatelli L, Dolzani P, et al. Human osteoarthritic cartilage shows reduced in vivo expression of IL-4, a chondroprotective cytokine that differentially modulates IL-1β-stimulated production of chemokines and matrix-degrading enzymes in vitro. PLoS ONE. 2014;9(5): e96925.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Riegger J, Maurer S, Pulasani S, et al. Simvastatin and fluvastatin attenuate trauma-induced cell death and catabolism in human cartilage. Front Bioeng Biotechnol. 2022;10: 965302.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ni Q, Chen H, Li W, et al. Pravastatin ameliorated osteoarthritis susceptibility in male offspring rats induced by prenatal ethanol exposure. Bone. 2021;149: 115976.

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Gou YL, Hu Y, et al. Simvastatin retards cartilage degradation and improves subchondral bone microstructure in osteoarthritis mice induced by high-fat diet. 2021 (Preprint). https://doi.org/10.21203/rs.3.rs-764244/v1

  36. Ruiqi W, Xuan Z, Yi Z, et al. Two-sample Mendelian randomization analysis of the relationship between statins and the risk of osteoarthritis. Chin J Tissue Eng Res. 2024;28(26):4106–12.

    Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yang.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kefu Yu and Ziming Li contributed equally to this work and share the first authorship.

Zhigang Zhao and Li Yang contributed equally to this work and share the last authorship.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Li, Z., Shi, W. et al. Causal impact of statins on susceptibility to osteoarthritis: insights from a two-sample Mendelian randomization analysis. Int J Clin Pharm (2024). https://doi.org/10.1007/s11096-024-01754-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11096-024-01754-6

Keywords

Navigation