Log in

Effect of the Freezing Step in the Stability and Bioactivity of Protein-Loaded PLGA Nanoparticles Upon Lyophilization

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The freezing step in lyophilization is the most determinant for the quality of biopharmaceutics. Using insulin as model of therapeutic protein, our aim was to evaluate the freezing effect in the stability and bioactivity of insulin-loaded PLGA nanoparticles. The performance of trehalose, sucrose and sorbitol as cryoprotectants was evaluated.

Methods

Cryoprotectants were co-encapsulated with insulin into PLGA nanoparticles and lyophilized using an optimized cycle with freezing at −80°C, in liquid nitrogen, or ramped cooling at −40°C. Upon lyophilization, the stability of protein structure and in vivo bioactivity were assessed.

Results

Insulin was co-encapsulated with cryoprotectants resulting in particles of 243–394 nm, zeta potential of −32 to −35 mV, and an association efficiency above 90%. The cryoprotectants were crucial to mitigate the freezing stresses and better stabilize the protein. The insulin structure maintenance was evident and close to 90%. Trehalose co-encapsulated insulin-loaded PLGA nanoparticles demonstrated enhanced hypoglycemic effect, comparatively to nanoparticles without cryoprotectant and added with trehalose, due to a superior insulin stabilization and bioactivity.

Conclusions

The freezing process may be detrimental to the structure of protein loaded into nanoparticles, with negative consequences to bioactivity. The co-encapsulation of cryoprotectants mitigated the freezing stresses with benefits to protein bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AAC:

Area above the curve

AE:

Association efficiency

ATR-FTIR:

Attenuated Total Reflectance-Fourier transform infrared spectroscopy

CD:

Circular dichroism

DSC:

Differential scanning calorimetry

HPLC:

High performance liquid chromatography

LC:

Loading capacity

PA:

Pharmacological availability

PLGA:

Poly(lactic-co-glycolic acid)

PVA:

Polyvinyl alcohol

RE:

Retention efficiency

SEM:

Scanning electron microscopy

Tc:

Collapse temperature

Tg:

Glass transition temperature

Tg’:

Glass transition temperature of the frozen sample

XRPD:

X-Ray powder diffraction

References

  1. Danhier F, Ansorena E, Silva J, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:505–22.

    Article  CAS  PubMed  Google Scholar 

  2. Fonte P, Araujo F, Silva C, Pereira C, Reis S, Santos HA, et al. Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol Adv. 2015;33:1342–54.

    Article  CAS  PubMed  Google Scholar 

  3. Konan Y, Gurny R, Allémann E. Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int J Pharm. 2002;233:239–52.

    Article  CAS  PubMed  Google Scholar 

  4. De Jaeghere F, Allemann E, Leroux J, Stevels W, Feijen J, Doelker E, et al. Formulation and lyoprotection of poly(lactic acid-co-ethylene oxide) nanoparticles: influence on physical stability and in vitro cell uptake. Pharm Res. 1999;16:859–66.

    Article  PubMed  Google Scholar 

  5. Williams NA, Polli GP. The lyophilization of pharmaceuticals: a literature review. J Parenter Sci Technol. 1984;38:48–59.

    CAS  PubMed  Google Scholar 

  6. Franks F. Freeze-drying of bioproducts: putting principles into practice. Eur J Pharm Biopharm. 1998;45:221–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kasper JC, Friess W. The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm. 2011;78:248–63.

    Article  CAS  PubMed  Google Scholar 

  8. Izutsu K, Fujimaki Y, Kuwabara A, Aoyagi N. Effect of counterions on the physical properties of l-arginine in frozen solutions and freeze-dried solids. Int J Pharm. 2005;301:161–9.

    Article  CAS  PubMed  Google Scholar 

  9. Heller M, Carpenter J, Randolph T. Protein formulation and lyophilization cycle design: prevention of damage due to freeze-concentration induced phase separation. Biotechnol Bioeng. 1999;63:166–74.

    Article  CAS  PubMed  Google Scholar 

  10. Kadoya S, Fujii K, Izutsu K, Yonemochi E, Terada K, Yomota C, et al. Freeze-drying of proteins with glass-forming oligosaccharide-derived sugar alcohols. Int J Pharm. 2010;389:107–13.

    Article  CAS  PubMed  Google Scholar 

  11. Searles J. Freezing and annealing phenomena in lyophilization. In: Rey L, May JC, editors. Freeze drying/lyophilization of pharmaceutical and biological products. Informa Healthcare; 2010. p. 52–81.

  12. Bhatnagar BS, Bogner RH, Pikal MJ. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol. 2007;12:505–23.

    Article  CAS  PubMed  Google Scholar 

  13. Sameti M, Bohr G, Ravi Kumar MNV, Kneuer C, Bakowsky U, Nacken M, et al. Stabilisation by freeze-drying of cationically modified silica nanoparticles for gene delivery. Int J Pharm. 2003;266:51–60.

    Article  CAS  PubMed  Google Scholar 

  14. Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203:1–60.

    Article  CAS  PubMed  Google Scholar 

  15. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58:1688–713.

    Article  CAS  PubMed  Google Scholar 

  16. Fonte P, Soares S, Sousa F, Costa A, Seabra V, Reis S, et al. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Biomacromolecules. 2014;15:3753–65.

    Article  CAS  PubMed  Google Scholar 

  17. Fonte P, Araújo F, Seabra V, Reis S, van de Weert M, Sarmento B. Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization. Int J Pharm. 2015;496:850–62.

    Article  CAS  PubMed  Google Scholar 

  18. Sarmento B, Ribeiro A, Veiga F, Ferreira D. Development and validation of a rapid reversed-phase HPLC method for the determination of insulin from nanoparticulate systems. Biomed Chromatogr. 2006;20:898–903.

    Article  CAS  PubMed  Google Scholar 

  19. Dong A, Huang P, Caughey W. Protein secondary structures in water from second-derivative amide i infrared spectra. Biochemistry. 1990;29:3303–8.

    Article  CAS  PubMed  Google Scholar 

  20. Kendrick B, Dong A, Allison S, Manning M, Carpenter J. Quantitation of the area of overlap between second-derivative amide I infrared spectra to determine the structural similarity of a protein in different states. J Pharm Sci. 1996;85:155–8.

    Article  CAS  PubMed  Google Scholar 

  21. Maltesen M, Bjerregaard S, Hovgaard L, Havelund S, Van De Weert M. Analysis of insulin allostery in solution and solid state with FTIR. J Pharm Sci. 2009;98:3265–77.

    Article  CAS  PubMed  Google Scholar 

  22. Fonte P, Soares S, Costa A, Andrade J, Seabra V, Reis S, et al. Effect of cryoprotectants on the porosity and stability of insulin-loaded PLGA nanoparticles after freeze-drying. Biomatter. 2012;2:329–39.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Matsumoto S. Proteins and sugars affecting the zeta potential and stability of dispersed vesicular globules in w/o/w emulsions. In: Nishinari K, Doi E, editors. Food hydrocolloids. US: Springer; 1993. p. 399–408.

    Google Scholar 

  24. Abdelwahed W, Degobert G, Fessi H. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur J Pharm Biopharm. 2006;63:87–94.

    Article  CAS  PubMed  Google Scholar 

  25. Abdelwahed W, Degobert G, Fessi H. A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): formulation and process optimization. Int J Pharm. 2006;309:178–88.

    Article  CAS  PubMed  Google Scholar 

  26. Tang X, Pikal M. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;21:191–200.

    Article  CAS  PubMed  Google Scholar 

  27. Pikal MJ, Shah S, Roy ML, Putman R. The secondary drying stage of freeze drying: drying kinetics as a function of temperature and chamber pressure. Int J Pharm. 1990;60:203–7.

    Article  CAS  Google Scholar 

  28. Pikal M, Shah S. The collapse temperature in freeze drying: dependance on measurement methodology and rate of water removal from the glassy state. Int J Pharm. 1990;62:165–86.

    Article  CAS  Google Scholar 

  29. Schwegman JJ, Carpenter JF, Nail SL. Evidence of partial unfolding of proteins at the ice/freeze-concentrate interface by infrared microscopy. J Pharm Sci. 2009;98:3239–46.

    Article  CAS  PubMed  Google Scholar 

  30. Searles JA, Carpenter JF, Randolph TW. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf. J Pharm Sci. 2001;90:860–71.

    Article  CAS  PubMed  Google Scholar 

  31. Bozdag S, Dillen K, Vandervoort J, Ludwig A. The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D, L-lactide-glycolide) nanoparticles. J Pharm Pharmacol. 2005;57:699–707.

    Article  CAS  PubMed  Google Scholar 

  32. Liu J, Viverette T, Virgin M, Anderson M, Paresh D. A study of the impact of freezing on the lyophilization of a concentrated formulation with a high fill depth. Pharm Dev Technol. 2005;10:261–72.

    Article  CAS  PubMed  Google Scholar 

  33. Patapoff TW, Overcashier DE. The importance of freezing on lyophilization cycle development. BioPharm. 2002;15:16–21.

    Google Scholar 

  34. Webb SD, Cleland JL, Carpenter JF, Randolph TW. Effects of annealing lyophilized and spray-lyophilized formulations of recombinant human interferon-gamma. J Pharm Sci. 2003;92:715–29.

    Article  CAS  PubMed  Google Scholar 

  35. Pikal MJ, Rigsbee DR. The stability of insulin in crystalline and amorphous solids: observation of greater stability for the amorphous form. Pharm Res. 1997;14:1379–87.

    Article  CAS  PubMed  Google Scholar 

  36. Sarmento B, Ferreira D, Jorgensen L, van de Weert M. Probing insulin’s secondary structure after entrapment into alginate/chitosan nanoparticles. Eur J Pharm Biopharm. 2007;65:10–7.

    Article  CAS  PubMed  Google Scholar 

  37. Strambini GB, Gabellieri E. Proteins in frozen solutions: evidence of ice-induced partial unfolding. Biophys J. 1996;70:971–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sarciaux JM, Mansour S, Hageman MJ, Nail SL. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying. J Pharm Sci. 1999;88:1354–61.

    Article  CAS  PubMed  Google Scholar 

  39. Eckhardt BM, Oeswein JQ, Bewley TA. Effect of freezing on aggregation of human growth hormone. Pharm Res. 1991;8:1360–4.

    Article  CAS  PubMed  Google Scholar 

  40. Chang BS, Kendrick BS, Carpenter JF. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. J Pharm Sci. 1996;85:1325–30.

    Article  CAS  PubMed  Google Scholar 

  41. Nema S, Avis KE. Freeze-thaw studies of a model protein, lactate dehydrogenase, in the presence of cryoprotectants. J Parenter Sci Technol. 1993;47:76–83.

    CAS  PubMed  Google Scholar 

  42. Carpenter JF, Arakawa T, Crowe JH. Interactions of stabilizing additives with proteins during freeze-thawing and freeze-drying. Dev Biol Stand. 1992;74:225–38. discussion 238–229.

    CAS  PubMed  Google Scholar 

  43. Griebenow K, Klibanov A. On protein denaturation in aqueous−organic mixtures but not in pure organic solvents. J Am Chem Soc. 1996;118:11695–700.

    Article  CAS  Google Scholar 

  44. Van de Weert M, Hering J, Haris P. Fourier transform infrared spectroscopy. In: Jiskoot W, Crommelin D, editors. Methods for structural analysis of protein pharmaceuticals. AAPS Press; 2005. p. 131–166.

  45. Jørgensen L, Vermehren C, Bjerregaard S, Froekjaer S. Secondary structure alterations in insulin and growth hormone water-in-oil emulsions. Int J Pharm. 2003;254:7–10.

    Article  PubMed  Google Scholar 

  46. Kelly S, Jess T, Price N. How to study proteins by circular dichroism. Biochim Biophys Acta. 2005;1751:119–39.

    Article  CAS  PubMed  Google Scholar 

  47. Yong Z, Yingjie D, Xueli W, **ghua X, Zhengqiang L. Conformational and bioactivity analysis of insulin: freeze-drying TBA/water co-solvent system in the presence of surfactant and sugar. Int J Pharm. 2009;371:71–81.

    Article  CAS  Google Scholar 

  48. Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV. Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci. 2000;9:1960–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ahmad A, Uversky VN, Hong D, Fink AL. Early events in the fibrillation of monomeric insulin. J Biol Chem. 2005;280:42669–75.

    Article  CAS  PubMed  Google Scholar 

  50. Bekard IB, Dunstan DE. Tyrosine autofluorescence as a measure of bovine insulin fibrillation. Biophys J. 2009;97:2521–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Falconi M, Bozzi M, Paci M, Raudino A, Purrello R, Cambria A, et al. Spectroscopic and molecular dynamics simulation studies of the interaction of insulin with glucose. Int J Biol Macromol. 2001;29:161–8.

    Article  CAS  PubMed  Google Scholar 

  52. Amidi M, Pellikaan HC, de Boer AH, Crommelin DJ, Hennink WE, Jiskoot W. Preparation and physicochemical characterization of supercritically dried insulin-loaded microparticles for pulmonary delivery. Eur J Pharm Biopharm. 2008;68:191–200.

    Article  CAS  PubMed  Google Scholar 

  53. Malik R, Roy I. Probing the mechanism of insulin aggregation during agitation. Int J Pharm. 2011;413:73–80.

    Article  CAS  PubMed  Google Scholar 

  54. Lakowicz JR. Principles of fluorescence spectroscopy. US: Springer; 2006.

    Book  Google Scholar 

  55. Arigita C, Jiskoot W, Westdijk J, van Ingen C, Hennink WE, Crommelin DJ, et al. Stability of mono- and trivalent meningococcal outer membrane vesicle vaccines. Vaccine. 2004;22:629–42.

    Article  CAS  PubMed  Google Scholar 

  56. LeVine H. Thioflavine T interaction with amyloid β-sheet structures. Amyloid. 1995;2:1–6.

    Article  CAS  Google Scholar 

  57. Maskevich AA, Stsiapura VI, Kuzmitsky VA, Kuznetsova IM, Povarova OI, Uversky VN, et al. Spectral properties of thioflavin t in solvents with different dielectric properties and in a fibril-incorporated form. J Proteome Res. 2007;6:1392–401.

    Article  CAS  PubMed  Google Scholar 

  58. Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, et al. Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry. 2001;40:6036–46.

    Article  CAS  PubMed  Google Scholar 

  59. Jimenez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR. The protofilament structure of insulin amyloid fibrils. Proc Natl Acad Sci U S A. 2002;99:9196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Pedro Fonte and Fernanda Andrade would like to thank Fundação para a Ciência e a Tecnologia (FCT), Portugal (PTDC/SAL-FCT/104492/2008; SFRH/BD/78127/2011) and (SFRH/BD/73062/2010) for financial support. This work was also financed by European Regional Development Fund (ERDF) through the Programa Operacional Factores de Competitividade − COMPETE, by Portuguese funds through FCT in the framework of the project PEst-C/SAU/LA0002/2013, and cofinanced by North Portugal Regional Operational Programme (ON.2 − O Novo Norte) in the framework of Project SAESCTN-PIIC&DT/2011 under the National Strategic Reference Framework (NSRF). It is also acknowledged the financial support from FCT/MEC through national funds and co-financed by FEDER, under the Partnership Agreement PT2020 (UID/MULTI/04378/2013 - POCI/01/0145/FERDER/007728). Abbot Laboratories, Portugal is acknowledged for kindly provide the Precision Xtra® blood glucose meter and test strips. The authors also thank to Dorthe Ørbæk from the Faculty of Health and Medical Sciences, University of Copenhagen, for the XRPD experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pedro Fonte or Bruno Sarmento.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonte, P., Andrade, F., Azevedo, C. et al. Effect of the Freezing Step in the Stability and Bioactivity of Protein-Loaded PLGA Nanoparticles Upon Lyophilization. Pharm Res 33, 2777–2793 (2016). https://doi.org/10.1007/s11095-016-2004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2004-3

KEY WORDS

Navigation