Log in

Development and Validation of a Stability-Indicating Related Substances RP-HPLC Method for Anagliptin and its Degradation Products

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

There is no stability-indicating specific related substances high-performance liquid chromatography (HPLC) method for anagliptin active pharmaceutical ingredients in the presence of its degradation products. Hence, there is a necessity to have a specific stability-indicating HPLC method for the quantification of anagliptin-related substances in the presence of its forced degradation products. The aim of the research work is to develop an innovative simple, accurate, precise, and selective HPLC method with the lesser use of organic solvents, for the quantification of anagliptin-related substances in the presence of its forced degradation products. The chromatographic separation was achieved on a YMC Pro C18 reversed-phase HPLC column (250 mm × 4.6 mm, 5 μ) with a runtime of 50 min. Mobile phase A and mobile phase B were chlorate buffer with pH 3.2 and acetonitrile respectively. The HPLC column oven temperature was set at 28°C and the photodiode array detector was set at 205 nm. The proposed test procedure has shown excellent linearity within the concentration range 0.081–6.296 μg/mL with correlation coefficient (r) about 0.9998. The limit of detection of anagliptin and related substances was observed within the range 0.052–0.106) μg/mL and the limit of quantification was observed within the range 0.156–0.317 μg/mL. The developed test procedure was successfully utilized for the quantification of related substances of anagliptin bulk drug without any interference with the degradation compounds. Hence, the test procedure can be utilized successfully in pharmaceutical organizations for the separation and quantification of anagliptin-related substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. International Conference on Harmonization Q1A (R2); Stability testing of new drug substances and products. ICH, IFPMA, Geneva (2003).

  2. ICH Q1B; Photostability testing of new drug substances and products. International conference on harmonization, IFPMA, Geneva (1996).

  3. ICH Q2 (R1); Validation of analytical procedures; text and methodology : International conference on harmonization of technical requirements for registration of pharmaceuticals for human use, IFPMA, Geneva (2005).

  4. ICH Guideline, Validation of analytical procedures; text and methodology, in Proceedings of International Conference on Harmonization, Topic Q2 (R1), Geneva (2005).

  5. FDA: Guidance for Industry; Validation of Analytical Procedures; Definition and Terminology Final Guidance, Silver Spring, MD, USA (2010).

  6. FDA: CDER, Beers and Donald; Analytical Procedures and Methods Validation for Drugs and Biologics Guidance for Industry, Silver Spring, MD, USA (2015).

  7. Government of India Ministry of health & family welfare; Published by Indian Pharmacopoeia Commission, 2, 503 – 728, (2014).

  8. S. Nishio, M. Abe and H. Ito, Diabetes Metab. Syndr. Obes. Targets Ther., 8, 163 – 171 (2015).

    Google Scholar 

  9. A. B. Olokoba, O. A. Obateru, L. B. Olokoba, et al., Oman Med. J., 27(4), 269 – 273 (2014).

    Google Scholar 

  10. K. Miyanko and M. Noda, Clin. Drug. Investig., 35, 141 – 147 (2015).

    Article  Google Scholar 

  11. C. Atsuko, T. Atsushi, M. Takeshi, et al., Cardiovasc. Diabetol., 18(158),1–8 (2019).

    Google Scholar 

  12. T. Hiroki, M. Takeshi, F. Yuichi, et al., Diabetes. Metab. Syndr. Obes., 13, 4993 – 5001(2020).

    Article  Google Scholar 

  13. S. M. **, and S. W. Park, K. H. Yoon, et al., Diabetes. Metab. Syndr. Obes., 17(5), 511 – 515 (2015).

    Article  CAS  Google Scholar 

  14. S. Furuta, C. Smart and A. Hackett, Xenobiotica, 43, 432 – 442 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. N. Gampa, N. T. Chevala, P. Pinnamaneni, et al., Int. J. Chem. Pharm. Anal., 4(2),1 – 8 (2017).

    Google Scholar 

  16. K. D. Malleswar, B. V. Rao and S. Shylaja, Indo Am. J. Pharm. Res., 9(07), 3096 – 3101 (2019).

    CAS  Google Scholar 

  17. A. Patil and A. A. Shirkedkar, Pharm. Methods, 7(2), 127 – 131 (2016).

    Article  CAS  Google Scholar 

  18. R. H. Majithia and J. S. Shah, Int. J. Pharmacy. Tech, 6, 7765 – 7771 (2015).

    CAS  Google Scholar 

  19. P. B. Bhatti and H. J. Panchal, World. J. Pharm. Res., 6, 956 – 973 (2017).

    CAS  Google Scholar 

  20. A. Patil and A. A. Shirkhedkar, Eurasian J. Anal. Chem., 12, 443 – 458 (2017).

    CAS  Google Scholar 

  21. S. T. Shah and D. G. Maheshwari, J. Globe. Trends Pharm. Sci., 6(4), 2925 – 2929 (2015).

    CAS  Google Scholar 

  22. P. B. Bhatti, World J. Pharm. Pharm. Sci., 6(10), 396 – 403 (2017).

    CAS  Google Scholar 

  23. S. N. Chellu, M. Malleshwararao and V. Suryanarayana, Sci. Pharm., 80, 139 – 152 (2012).

    Article  Google Scholar 

  24. P. R. Cumar, M. Vasudevan and Deecaraman, Rasayan J. Chem., 5(2), 137 – 141 (2012).

  25. B. Santhosha, A Ravindranath and C. Sundari, Int. Res J. Pharm. App. Sci., 2(3), 22 – 28 (2012).

    Google Scholar 

  26. P. A. Kumar, G. Aruna, K. Rajasekar, et al., Int. Bul. Drug Res., 3(5), 58 – 68 (2013).

    Google Scholar 

  27. K. S. Potdar, M. S. Kalshetti, and R. Y. Patil, Int. J. Chem. Pharm. Anal., 4(3),1–9 (2017).

    Google Scholar 

  28. M. M. Mabrouk, S. F. Hammad, F. R. Mansour, et al., Der Pharmacia Sinica, 7(2), 32 – 40 (2016).

    CAS  Google Scholar 

  29. K. Zhang, P. Ma, W. **g, et al., Asian J. Pharm. Sci., 10(2), 152 – 158 (2015).

    Google Scholar 

  30. P. Supriya, N. L. Madhavi, K. Rohith, et al., Asian J. Pharm. Clin. Res., 9(1), 282 – 287 (2016).

    CAS  Google Scholar 

  31. K. Y. Kavitha, G. Geetha, R. Hariprasad, et al., J. Chem. & Pharm. Res., 5(1), 230 – 235 (2013).

    CAS  Google Scholar 

  32. A. B. Loni, and M. R. Ghante, Der Pharma Chemica, 4(3), 854 – 859 (2012).

    CAS  Google Scholar 

  33. N. T. Lamie and M. A. Mahrouse, Spectrochim. Acta A Mol. Biomol. Spectrosc., 204, 743 – 747 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. K. Sharma and A. Parle, Int. J. Pharm. Res. Rev., 4(11), 35 – 42 (2015).

    CAS  Google Scholar 

  35. P. B. Deshpande and S. R. Butle, Eurasian J. Anal. Chem., 12(4), 325 – 335 (2017).

    CAS  Google Scholar 

  36. R. H. Majithia and A. Khodadiya, Int. J. Pharm. Sci. Res., 12(1), 292 – 297 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Lupin Pharmaceutical Ltd (Tarapur, India) for providing gratis samples for the present studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pathan Mohd Arif.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavan, R.S., Ahad, A., Phase, R. et al. Development and Validation of a Stability-Indicating Related Substances RP-HPLC Method for Anagliptin and its Degradation Products. Pharm Chem J 57, 1314–1322 (2023). https://doi.org/10.1007/s11094-024-03040-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-024-03040-1

Keywords

Navigation