Log in

Investigation of Antimicrobial Activities and Molecular Docking Studies of Synthesized Sulfonamide Compounds

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Sulfonamides are commonly used worldwide. In this study, several sulfonamide compounds such as N-(4-acetylphenyl)-4-methylbenzenesulfonamide (PSASF), N-(3-acetylphenyl)-4-methylbenzenesulfonamide (PSASF-1), 1-tosyl-1H-imidazole (PSASF-x), 4-methyl-N-(pyridin-4-yl) benzenesulfonamide (PSASF-2), and 1-ethyl-4-tosylpiperazine (PSASF-3) have been synthesized, with antibacterial activities against Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Staphylococcus aureus ATCC 29213 have been evaluated. Antibacterial properties of drugs were studied in depth using molecular docking research. In addition, the synthesized compounds were characterized using spectral analysis. Antibacterial activities of synthesized derivates were determined against E. coli, P. aeruginosa, and S. aureus with minimum inhibitory concentration (MIC) by using the broth microdilution method. All prepared compounds exhibited significant antibacterial activity against S. aureus, E. coli, and P. aeruginosa. The MIC value for E. coli and P. aeruginosa was determined as 256 μg/mL. MIC against S. aureus was observed to be 256 and 512 μg/mL for the PSASF compound and the other compounds respectively. Results of the current study revealed that four of the five compounds had weaker antibacterial activity against S. aureus at a concentration of 512 μg/mL. However, the MIC values from our experiments are significantly higher in comparison with the reference drugs such as amoxicillin, ciprofloxacin, meropenem, and vancomycin in E. coli and S. aureus. On the other hand, in a comparison of the synthesized compounds with reference drugs in P. aeruginosa, no statistical difference was demonstrated. Antibacterial activity of the produced derivates was likewise an agreement with regard to the molecular docking and the laboratory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. F. A. N. El-Dien, G. G. Mohamed, E. Khaled, and E. Y. Z. Frag, J. Adv. Res., 1(3), 215 – 220 (2010).

    Article  Google Scholar 

  2. I. R. Ezabadi, C. Camoutsis, P. Zoumpoulakis, et al., Bioorg. Med. Chem., 16(3), 1150 – 1161 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. M. A. Gonzalez, D. B. Gorman, C. T. Hamilton, and G. A. Roth, Org. Process. Res. Dev., 12(2), 301 – 303 (2008).

    Article  CAS  Google Scholar 

  4. J. DeRuiter, Structural features of organic medicinal agents. Principle of Drug Action, 1, 10 – 13 (2005).

    Google Scholar 

  5. L. Kaur, A. Chopra, L. Singh, and M. P. Singh, Int. J. Pharm. Sci. Res., 8(10), 4461 – 4472 (2017).

    CAS  Google Scholar 

  6. M. Remko and C-W. Von Der Lieth, Bioorg. Med. Chem., 12(20), 5395 – 5403 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. P. Zajdel, K. Marciniec, A. Maoelankiewicz, et al., Bioorg. Med. Chem., 20, 1545 – 1556 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. A. Kolaczek, I. Fusiarz, J. Lawecka and D. Branowska, Chemik, 68(7), 620 – 628 (2014).

    Google Scholar 

  9. S. S. Stokes, R. Albert, E. T. Buurman, B., et al., Bioorg. Med. Chem. Lett., 22(23), 7019 – 7023 (2012).

  10. M. Showan and M. Suniti, Tetrahedron, 76(48), 131662 (2020).

    Article  Google Scholar 

  11. W. Hu, Z. Guo, F. Chu, et al., Bioorg. Med. Chem., 11(7), 1153 – 1160 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. M. Médebielle, O. Onomura, R. Keirouz, et al., Synthesis, 17, 2601 – 2608 (2002).

    Article  Google Scholar 

  13. S. K. R. Parumala and R. K. Peddinti, Tetrahedron Lett., 57(11), 1232 – 1235 (2016).

    Article  CAS  Google Scholar 

  14. E. A. Wydysh, S. M. Medghalchi, A. Vadlamudi, and C. A. Townsend, J. Med. Chem., 52(10), 3317 – 3327 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. N. N. Al-Mohammed, Y. Alias, Z. Abdullah, et al., Molecules, 18, 11978 – 11995 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Kaya, S. Erkan and D. Karakaº, Spectrochim. Acta. Part A: Mol. Biomol. Spect., 244, 118829 (2021).

    Article  CAS  Google Scholar 

  17. S. Erkan, J. Mol. Struct., 1189, 257 – 264 (2019).

    Article  CAS  Google Scholar 

  18. M. Abdul Qadir, M. Ahmed, H. Aslam, et al., J. Chemistry, 8 pages (2015).

  19. R. A. Azzam, R. E. Elsayed and G. H. Elgemeie, ACS Omega, 5(18), 10401– 10414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Hui and Y. Zhang, Chin. J. Chem., 34(4), 359 – 362 (2016).

    Article  Google Scholar 

  21. T. Meºeli, ª. D. Doðan, M. G. Gündüz, et al., New J. Chem., 45, 8166 – 8177 (2021).

  22. H. Tian, A. Cao, L. Qiao, et al., Tetrahedron, 70(47), 9107 – 9112 (2014).

    Article  CAS  Google Scholar 

  23. G. Reyes-Rangel, J. Vargas-Caporali and E. Juaristi, Tetrahedron, 72(3), 379 – 391 (2016).

    Article  CAS  Google Scholar 

  24. M. A. Solekhova and Yu. V. Kurbatov, Russ. J. Org. Chem., 38(8), 1192 – 1194 (2005).

    Article  Google Scholar 

  25. S. Riganas, I. Papanastasiou, G. B. Foscolos, et al., J. Med. Chem., 55(22), 10241–10261 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed.; JohnWiley & Sons, Inc.: New York, NY, USA (2007).

    Book  Google Scholar 

  27. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters; EUCAST, Version 11.1. 2021.

  28. II R. D. Dennington, T. A. Keith, J. M. Millam, GaussView 5.0, Wallingford, CT (2009)

  29. Z. Bikadi and E. Hazai, J. Cheminformatics, 1(1), 1 – 16 (2009).

    Article  Google Scholar 

  30. H. H. Khalid, S. Erkan and N. Bulut, Optik, 166324 (2021).

  31. R. Huey, G. M. Morris, A. J. Olson and D. S. Goodsell, J. Comput. Chem., 28(6), 1145 – 1152 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. H. C. Neu and T. D. Gootz, In: Medical Microbiology, S. Baron (ed.), The University of Texas Medical Branch at Galveston, Galveston (1996).

  33. K. C. Van Meter and R. J. Hubert, Microbiology for the Healthcare Professional, Elsevier, China (2016), pp. 214 – 232.

    Google Scholar 

  34. V. M. Varagiæ and M. P. Miloševiæ, Farmakologija, Elitmedica, Beograd (2009), pp. 622 – 627.

  35. A. Taèiæ, V. Nikoliæ, L. Nikoliæ and I. Saviæ, Adv. Technol., 6(1), 58 – 71 (2017).

    Article  Google Scholar 

  36. M. A. Miller-Hjelle, V. Somaraju, and J. T. Hjelle, In: Modern Pharmacology with Clinical Applications, C. R. Craig and R. E. Stitzel (eds.), Lippincott Williams & Wilkins, Philadelphia, Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo (2004), pp. 515 – 525.

  37. K. Zessel, S. Mohring, G. Hamscher, et al., Chemosphere, 100, 167 – 174 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. L. Garoff, D. L. Huseby, L. Praski Alzrigat, D. Hughes, J. Antimicrob. Chemother., 73(12), 3285 – 3292 (2018).

  39. M. A. Foxley, S. N. Wright, A. K. Lam, ACS Med. Chem. Lett., 8(10), 1083 – 1088 (2017).

    CAS  Google Scholar 

  40. X. Qi, X. Li, J. Zhao, et al., J. Antibiot. (Tokyo), 72(4), 237 – 240 (2019).

  41. M. T. Suller, D. Lloyd, J. Appl. Microbiol., 92(5), 866 – 872 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ozbey.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozbey, G., Tanriverdi, E.S., Senkal, B.F. et al. Investigation of Antimicrobial Activities and Molecular Docking Studies of Synthesized Sulfonamide Compounds. Pharm Chem J 57, 1394–1400 (2023). https://doi.org/10.1007/s11094-023-03002-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-03002-z

Keywords

Navigation