Log in

Response Surface Optimised Bioanalytical Stability Indicating LC-UV Method for the Estimation of Emtricitabine and Efavirenz with Internal Standard

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

This work was aimed at the development of response surface optimised bioanalytical stability indicating the LC-UV method for the estimation of drugs such as Emtricitabine and Efavirenz. Current scenario of analysis states the need for development of a method that is sustainable and has wider applications in pharmacokinetics and bio equivalence studies. So to reduce the chances of method failure in analysis of low concentration analytes with different pH and pKa values from a biological matrix, a conceptual and strategically investigated method using PQRI database for column selection, Ishikawa cause and effect fish bone diagram for risk ranking of chromatographic parameters and screening design (Taguchi design) to filter most influential method parameters and attributes were applied for develo** a method to determine Emtricitabine and Efavirenz in presence of internal standard from bulk in human plasma sample. The optimization of variables was accomplished using boxbehnken design and the points with derringer’s desirability index 1 from experimental design were executed by obeying the chromatographic parameters stated. The percentage bias of these responses was compared to laboratory data and the result indicated % variation to be less than 5%. The method was validated for all other parameters according to ICH guidelines and variation of all parameters was reported to be less than 2% RSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O. L. Bryan-Marrugo, J. Ramos-Jiménez, H. Barrera-Saldaña, et al., Med. Univ., 17, 165 – 174 (2015).

    Google Scholar 

  2. C. Z. Matthews, E. J. Woolf, R. S. Mazenko, and H. Haddix-Wiener, J. Pharm. Biomed. Anal., 28, 925 – 934 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. O. D. S. Viana, F. Patrícia, M. Medeiros, et al., Brazil. J. Pharm. Sci., 47, 97 – 102 (2011).

    Google Scholar 

  4. B. N. Patel, Pharm. Methods, 3, 73 – 78 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. A. L. R. D. Psrchnp Varma, Indian J. Pharm. Pharmacol., 1, 1 – 17 (2014).

  6. R. Sharma and P. Gupta, Eurasian J. Chem., 4, 276 – 284 (2009).

    CAS  Google Scholar 

  7. P. S. Devrukhakar, R. Borkar, N. Shastri, and K. V. Surendranath, ISRN Chromatogr., 2013, 1 – 8 (2013).

    Article  Google Scholar 

  8. S. Nadig, J. T. Jacob, I. Bhat, and V. Kishoreraju, Int. J. Res. Pharm. Sci., 4, 391 – 396 (2013).

    CAS  Google Scholar 

  9. Rao A. Srinivasa, N. G. Kumar, K. Srilekha, and Kumari N. Aruna, Int. J. Adv. Res. Sci. Eng., 5(05), 188 – 200 (2016).

  10. D. Schlossberg, R. Samuel, EMTRIVA (Emtricitabine), in: Antibiotics Manual: A Guide to Commonly Used Antimicrobials, John Wiley and Sons (2017), pp. 141 – 142; https: https://doi.org/10.1002/9781119220787.ch64.

  11. A. Ramaswamy, A. Smith, and A. Gnana, Arab. J. Chem., 11, 275 – 281 (2018).

    Article  CAS  Google Scholar 

  12. N. A. Raju, J. V. Rao, and K. V. Prakash, Orient. J. Chem., 24, 645 – 650 (2008).

    CAS  Google Scholar 

  13. R. Nirogi, G. Bhyrapuneni, V. Kandikere, et al., Biomed. Chromatogr., 23, 371 – 381 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. R. K. Mishra, N. Chaubey, J. R. Patel, et al., Int. J. Appl. Pharm., 12, 41 – 50 (2020).

    Article  CAS  Google Scholar 

  15. S. Bonde, C. G. Bonde, B. Prabhakar, Microchem. J., 149, 103982 (2019).

    Article  CAS  Google Scholar 

  16. P. Kumar, N. Rao, T. Cecchi, et al., J. Pharm. Biomed. Anal., 147, 590 – 611 (2018).

    Article  Google Scholar 

  17. Y. Huang, H. **ao, Y. Liu, et al., Chem. Biol. Drug Design, 93(1), 29 – 37 (2019); https: //doi.org/https://doi.org/10.1111/cbdd.13375

  18. B. Bidlingmeyer, C. C. C. P. F. Richard, P. Koerner, et al., Pharmacopoeial Forum, 31, 637 – 645 (2005).

    Google Scholar 

  19. G. C. Slack adn N. H. Snow, Sep. Sci. Technol., 8, 237 – 268 (2007).

  20. S. L. C. Ferreira, R. E. Bruns, H. S. Ferreira, et al., Anal. Chim. Acta, 597, 179 – 186 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Tulasi Kanumuri.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanumuri, R.T., Kavuri, N.R. & Sankranthi, Y. Response Surface Optimised Bioanalytical Stability Indicating LC-UV Method for the Estimation of Emtricitabine and Efavirenz with Internal Standard. Pharm Chem J 57, 608–619 (2023). https://doi.org/10.1007/s11094-023-02926-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02926-w

Keywords

Navigation