Log in

Development of a Spectrophotometric Analytical Method to Quantify Ceftriaxone Content in Polymeric Microneedles

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Ceftriaxone is a third-generation antibiotic which has a broad spectrum of activity against Gram-positive and Gram-negative microorganisms. Normally, microorganisms that are present in wounds include S. aureus. P. aeruginosa, P. mirabilis, and E. coli, which do not allow tissues to regenerate. This work was aimed at develo** a spectrophotometric method to determine ceftriaxone loaded in polymeric microneedles for the treatment of chronic wounds. Regression equation of the method is linear in a concentration range of 16 – 48 μg/mL (correlation coefficient of 0.9998) at a selected detector wavelength of 274 nm. The detection and quantification limits are 2.57 × 10–3 and 8.59 × 10–3 μg/mL, respectively. The developed method demonstrated good inter-day and intra-day precision with an RSD < 2. The percentage recovery of ceftriaxone was 98.53%. In conclusion, the spectrophotometric method with detection at 274 nm is specific, reproducible, accurate and robust for the determination of ceftriaxone in polymeric microneedles of polymethyl vinyl ether-alt-maleic anhydride (PMVE/MA) at 95% confidence interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. N. A. Alhakamy, G. Caruso, B. Eid, et al., Pharmaceutics, 13(10), 3 – 19 (2021).

    Article  Google Scholar 

  2. A. Takahiro, M. Daisuke, M. Takano, et al., IDSA, 73(8), 1452 – 1458 (2021).

    Google Scholar 

  3. C. Venturini, B. Bowring, A. Fajardo, et al., Antimicrob. Agents Chemother., 65(2), 1504 – 1520 (2021).

    Article  Google Scholar 

  4. M. Kan, H. Y. Shi., B. Han, et al., Antimicrob. Agents Chemother., 65(1), 1 – 10 (2020).

  5. M. A. Akl, M. A. Ahmed, A. Ramadan, et al., J. Pharm. Biomed., 55(2), 247 – 252 (2011).

    Article  CAS  Google Scholar 

  6. A. Salman, Egypt. J. Chem., 64(9), 4901 – 4906 (2021).

    Google Scholar 

  7. K. Y. Patel, Z. R. Dedania, R. R. Dedania, FJPS, 7(1), 141 – 151 (2021).

    Google Scholar 

  8. M. T. da Trindade, A. C. Kogawa, H. R. Nunes, J. Chromatogr. Sci., 60(3) 1 – 7 (2021).

    Google Scholar 

  9. G. Pajchel, S. Tyski, J. Chromatogr. A, 895(1), 27 – 31 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. M. Ongas, J. Standing, B. Ogutu, et al., Wellcome Open Res., 2(43), 1 – 34 (2017).

    Google Scholar 

  11. L. I. Bebawy, K. El Kelani, L. A. Fattah, et al., J. Pharm. Biomed., 32(6), 1219 – 1225 (2003).

    Article  CAS  Google Scholar 

  12. J. Shah, M. R. Jan, S. Shah, et al., J. Fluoresc., 21(6), 2155 – 2163 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. H. Assaf, B. Bushra, J. Pharm. and Tech., 14(4), 1928 – 1932 (2021).

    Google Scholar 

  14. W. Zhao, Y. Zhang, Q Li, Clin. Chim. Acta, 391(1 – 2), 80 – 84 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. M. T. da Trindade, H. R. N. Salgado, Crit. Rev. Anal. Chem., 48(2), 95 – 101 (2018).

    Article  PubMed  Google Scholar 

  16. L. J. Bessa, P. Fazii, G. Giulio, et al., Int. Wound J., 12(1), 47 – 52 (2015).

    Article  PubMed  Google Scholar 

  17. P. Serrano, C. L. Dominguez, I. M. Rodriguez, et al., Curr. Pharm. Biotechnol., 21(9), 852 – 861 (2020).

    Article  Google Scholar 

  18. P. Serrano-Castañeda, J. J. Escobar-Chavez, I. M. Rodriguez, et al., J. Pharm. Pharmaceut. Sci., 21(1),73 – 93 (2018).

    Google Scholar 

  19. M. I. Morales-Florido, J. E. Miranda-Calderón, M. A. Gómez-Sámano, and J. J. Escobar-Chavez, J. Pharm. Pharmaceut. Sci., 25, 93 – 109 (2022).

    CAS  Google Scholar 

  20. J. Xu, D. Xu, X. Xuan, et al., MDPI, 26(19), 5912 (2012).

    Google Scholar 

Download references

Funding

Dr. Serrano Castañeda wants to acknowledge Conacyt and BASF México. Dr. Escobar Chávez wants to acknowledge PAPIIT IG 100220, PAPIME PE 201420, Cátedra de Investigación: CI-2206 and CONACyT CF 140617.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Juan Escobar-Chávez.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano-Castañeda, P., Pérez-Gutiérrez, D.A., Castillo-Carmona, L.F. et al. Development of a Spectrophotometric Analytical Method to Quantify Ceftriaxone Content in Polymeric Microneedles. Pharm Chem J 57, 603–607 (2023). https://doi.org/10.1007/s11094-023-02925-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02925-x

Keywords

Navigation