Log in

Production of the Amorphous Form of Ibrutinib and Study of its Physicochemical Properties

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The main lyophilization parameters enabling the production of amorphous ibrutinib active pharmaceutical ingredient (API) are presented. The amorphous and crystalline APIs were studied using x-ray powder diffractometry, scanning electron microscopy, and differential scanning calorimetry. The particle size, melting point, hygroscopicity, moisture content, and solubility in organic solvents and aqueous solutions were determined for both API forms. Lyophilization from a binary DMSO/t-BuOH mixture made it possible to obtain an amorphous form of ibrutinib without adding any crystallization inhibitors and to eliminate their effects on the API. The amorphous form exhibited enhanced solubility as compared to the crystalline form A used in the original drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. J. Y.-S. Lim, S. Bhatia, L. L. Robison, et al., Cancer, 120(7), 955 – 962 (2013).

    Article  PubMed  Google Scholar 

  2. T. J. Kipps, F. K. Stevenson, C. J. Wu, et al., Nat. Rev. Dis. Primers, 3(1), 955 – 962 (2017).

    Google Scholar 

  3. G. Juliusson and R. Hough, Progress in Tumor Research, S. Karger AG, Basel (2016), pp. 87 – 100.

  4. Y. Yao, X. Lin, F. Li, et al., Biomed. Eng. Online, 21(1), 955 – 962 (2022).

    Article  Google Scholar 

  5. A. M. Williams, A. M. Baran, M. Schaffer, et al., Am. J. Hematol., 95(1), 955 – 962 (2019).

    Google Scholar 

  6. Imbruvica®. Highlights of Prescribing Information; https://www.accessdata.fda.gov/drugsatfdadocs/label/2018/210563s000lbl.pdf.

  7. Imbruvica®. European Medicines Agency; https://www.ema.europa.eu/en/medicines/human/EPAR/imbruvica.

  8. L. A. Honigberg, A. M. Smith, M. Sirisawad, et al., Proc. Natl. Acad. Sci. USA, 107(29), 13075 – 13080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. D. Vetrie, I. Vorechovsky, P. Sideras, et al., Nature, 361(6409), 226 – 233 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. S. Tsukada, D. C. Saffran, D. J. Rawlings, et al., Cell, 72(2), 279 – 290 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. J. D. Thomas, P. Sideras, C. I. E. Smith, et al., Science, 261(5119), 355 – 358 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. P. Kokhaei, F. Jadidi-Niaragh, A. S. Jahromi, et al., J. Drug Targeting, 24(5), 373 – 385 (2015).

    Article  Google Scholar 

  13. E. Grassilli, F. Pisano, A. Cialdella, et al., Oncogene, 35(33), 4368 – 4378 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. N. Feldhahn, P. Rio, B. N. B. Soh, et al., Proc. Natl. Acad. Sci. USA, 102(37), 13266 – 13271 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J. C. Byrd, J. R. Brown, S. O’Brien, et al., N. Engl. J. Med., 371(3), 213 – 223 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. J. G. Gribben, F. Bosch, F. Cymbalista, et al., Br. J. Haematol., 180(5), 666 – 679 (2018).

    Article  PubMed  Google Scholar 

  17. M. Allouchery, C. Tomowiak, T. Lombard, et al., Front. Pharmacol., 12, 769315 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. M. Merli and F. Passamonti, Am. J. Hematol., 94(12), 1303 – 1305 (2019).

    Article  PubMed  Google Scholar 

  19. R. de Vries, J. W. Smit, P. Hellemans, et al., Br. J. Clin. Pharmacol., 81(2), 235 – 245 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. E. D. Eisenmann, Q. Fu, D. Garrison, et al., FASEB J., 34, S1, 1 (2020).

    Google Scholar 

  21. A. S. Kolbin, I. A. Vilyum, M. A. Proskurin, and Yu. E. Balykina, Kach. Klin. Prakt., No. 1, 32 – 43 (2015).

  22. E. V. Derkach, V. K. Fedyaeva, O. Yu. Rebrova, and E. A. Nikitin, Med. Tekhnol.: Otsenka Vybor, No. 1 (23), 58 – 72 (2016).

  23. A. Chhina, M. Pernia Marin, S. P. Thomas, et al., Blood, 138(1), 4967 (2021).

  24. Cancer drug costs for a month of treatment at initial Food and Drug Administration approval; https://www.mskcc.org/sites/default/files/node/25097/documents/111516-drug-coststable.pdf.

  25. T. D. Shanafelt, B. J. Borah, H. D. Finnes, et al., J. Oncol. Pract., 11(3), 252 – 258 2015).

    Article  PubMed  Google Scholar 

  26. X. Shi, S. Song, Z. Ding, et al., J. Pharm. Sci., 108(9), 3020 – 3028 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. X. Shi, B. Fan, C. Gu, et al., J. Drug Delivery Sci. Technol., 59, 101875 (2020).

    Article  CAS  Google Scholar 

  28. F. Shakeel, M. M. Salem-Bekhit, M. Iqbal, and N. Haq, J. Chem. Thermodyn., 89, 159 – 163 (2015).

    Article  CAS  Google Scholar 

  29. Z. **, W. Zhang, Y. Fei, et al., Pharmaceutics, 12(2), 144 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. C. A. McCarthy, R. J. Ahern, R. Dontireddy, et al., Expert Opin. Drug Deliv., 13(1), 93 – 108 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. X. Shi, S. Song, Z. Ding, et al., J. Pharm. Innov., 15(4), 569 – 580 (2020).

    Article  CAS  Google Scholar 

  32. I. A. Dain, S. A. Zolotov, N. B. Demina, et al., OpenNano, 8, 100073 (2022).

    Article  Google Scholar 

  33. M. Wostry, H. Plappert, H. Grohganz, Pharmaceutics, 12(10), 941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. Alqurshi, K. L. A. Chan, and P. G. Royall, Sci. Rep., 7(1), (2017).

  35. E. Valkama, O. Haluska, V.-P. Lehto, et al., Int. J. Pharm., 606, 120902 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. B. C. Hancock and M. Parks, Pharm. Res., 17, 397 – 404 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. H. Takeuchi, S. Nagira, H. Yamamoto, and Y. Kawashima, Int. J. Pharm., 293(1 – 2), 155 – 164 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. G. G. Z. Zhang, D. Law, E. A. Schmitt, and Y. Qiu, Adv. Drug Delivery Rev., 56(3), 371 – 390 (2004).

    Article  CAS  Google Scholar 

  39. D. Singhal and W. Curatolo, Adv. Drug Delivery Rev., 56(3), 335 – 347 (2004).

    Article  CAS  Google Scholar 

  40. M. Andreeta (ed.), Crystallization – Science and Technology, InTech, London (2012), pp. 183 – 205.

    Google Scholar 

  41. K. Nagapudi and J. Jona, Current Bioactive Compounds, Vol. 4(4), Bentham Science Publishers Ltd., Sharjah (2008), pp. 213 – 224.

  42. P. Kanaujia, P. Poovizhi, W. K. Ng, and R. B. H. Tan, Powder Technol., 285, 2 – 15 (2015).

    Article  CAS  Google Scholar 

  43. S. Chaudhari and A. Gupte, Br. J. Pharm. Res., 16(6), 1 – 19 (2017).

    Article  Google Scholar 

  44. J. Muzík, D. Lizonova, A. Zadrazil, and F. Stepanek, Chem. Eng. J., 392, 123754 (2020).

    Article  Google Scholar 

  45. H. Park, K.-H. Cha, S. H. Hong, et al., Pharmaceutics, 12(4), 377 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. S. K. Misra and K. Pathak, ADMET DMPK, 8, No. 4, 355 – 374 (2020).

    PubMed  PubMed Central  Google Scholar 

  47. E. Zaini, L. Fitriani, and A. Haqi, J. Adv. Pharm. Technol. Res., 7(3), 105 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. W. Ngamcherdtrakul, T. Sangvanich, M. Reda, et al., Int. J. Nanomed., 13, 4015 – 4027 (2018).

    Article  CAS  Google Scholar 

  49. A. H. Ibrahim, J.-H. Smatt, N. P. Govardhanam, et al., Eur. J. Pharm. Sci., 142, 105103 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. E. Lenz, K. T. Jensen, L. I. Blaabjerg, et al., Eur. J. Pharm. Sci., 96, 44 – 52 (2015).

    CAS  Google Scholar 

  51. M. Karimi-Jafari, L. Padrela, G. M. Walker, and D. M. Croker, Cryst. Growth Des., 18(10), 6370 – 6387 (2018).

    Article  CAS  Google Scholar 

  52. M. Dixit, P. Kulkarni, and P. Selvam, Elixir Pharm., 41, 5717 – 5730 (2011).

    Google Scholar 

  53. M. Delle Piane and M. Corno, Materials, 15(4), 1357 (2022).

  54. I. Sagud, D. Zanolla, G. Zingone, et al., C. R. Chim., 24(2), 233 – 242 (2021).

    Google Scholar 

  55. S. Jafari, H. Derakhshankhah, L. Alaei, et al., Biomed. Pharmacother., 109, 1100 – 1111 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. L. I. Mosquera-Giraldo, N. S. Trasi, and L. S. Taylor, Int. J. Pharm., 461(1 – 2), 251 – 257 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. V. Shirisha, B. Krishnaveni, S. Illendula, et al., Int. J. Pharm. Biol. Sci., 9(1), 25 – 35 (2019).

    CAS  Google Scholar 

  58. P. V. Gogineni, P. A. Crooks, and R. B. Murty, J. Chromatogr., Biomed. Appl., 620(1), 83 – 88 (1993).

  59. Z. Chao, W. Bo-Chu, and Z. Lian-Cai, Chin. J. Anal. Chem., 39(7), 1117 – 1120 (2011).

    Google Scholar 

  60. European Pharmacopoeia, 6th Ed., Council of Europe, Strasbourg (2008), 01 / 2008:51100.

  61. M. J. Garcia-Sucre, A. J. Castellanos-Suarez, I. Rivas, and G. Urbina-Villalba, Interciencia, 37(1), 59 – 64 (2012).

    Google Scholar 

  62. H. Goswami and J. R. Seth, Ind. Eng. Chem. Res., 58(18), 7661 – 7669 (2019).

    Article  CAS  Google Scholar 

  63. M. Smyth, E. Goldman, et al., US Pat. No. 9,296,753 B2, Mar. 29, 2019.

  64. X. Shi, S. Song, Z. Ding, et al., J. Pharm. Sci., 108(9), 3020 – 3028 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. M. F. Simoes, B. A. Nogueira, A. M. Tabanez, et al., Int. J. Pharm., 579, 119156 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. I. Adin, S. Krivonos, et al., US Pat. No. 9,884,869 B2, Feb. 6, 2018.

  67. ICH Harmonised Guideline Impurities: Guideline for Residual Solvents Q3C(R6) (2016); https://database.ich.org/sites/default/files/Q3C-R6GuidelineErrorCorrection_2019_0410_0.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Ponomarev.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 57, No. 2, pp. 45 – 51, February, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolotov, S.A., Sazonov, G.K., Dain, I.A. et al. Production of the Amorphous Form of Ibrutinib and Study of its Physicochemical Properties. Pharm Chem J 57, 300–305 (2023). https://doi.org/10.1007/s11094-023-02880-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02880-7

Keywords

Navigation