Log in

Plasma-Liquid Synthesis as a New Method for the Production of MXenes

  • Perspective
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this work, the successful synthesis of nanostructures based on MXenes by initiating a pulse discharge between titanium wires immersed in carbon tetrachloride is presented. By choosing carbon tetrachloride as the environment, the formation of oxide structures in the synthesized samples could be avoided. The characterization of the obtained structures was carried out using various techniques, including scanning electron microscopy, X-ray phase analysis, EDS, Raman and FTIR spectroscopy. The results confirmed the successful formation of MXenes with a Cl occupying the interlayer space. The properties of the discharge initiated in CCl4 were also determined. The results suggest the potential of this plasma-liquid method for the synthesis of high-purity MXenes without impurities commonly found in conventionally prepared samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Naguib M, Kurtoglu M, Presser V et al (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv Mater 23:4248–4253. https://doi.org/10.1002/adma.201102306

    Article  CAS  PubMed  Google Scholar 

  2. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005. https://doi.org/10.1002/adma.201304138

    Article  CAS  PubMed  Google Scholar 

  3. Murali G, Reddy Modigunta JK, Park YH et al (2022) A review on MXene synthesis, stability, and photocatalytic applications. ACS Nano 16:13370–13429. https://doi.org/10.1021/acsnano.2c04750

    Article  CAS  PubMed  Google Scholar 

  4. Harris KJ, Bugnet M, Naguib M et al (2015) Direct measurement of surface termination groups and their connectivity in the 2D MXene V2CTx using NMR spectroscopy. J Phys Chem C 119:13713–13720. https://doi.org/10.1021/acs.jpcc.5b03038

    Article  CAS  Google Scholar 

  5. Urbankowski P, Anasori B, Makaryan T et al (2016) Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8:11385–11391. https://doi.org/10.1039/C6NR02253G

    Article  CAS  PubMed  Google Scholar 

  6. Wu Z, Shen J, Li C et al (2023) Niche applications of MXene materials in photothermal catalysis. Chemistry (Easton) 5:492–510. https://doi.org/10.3390/chemistry5010036

    Article  CAS  Google Scholar 

  7. Seok S-H, Choo S, Kwak J et al (2021) Synthesis of high quality 2D carbide MXene flakes using a highly purified MAX precursor for ink applications. Nanoscale Adv 3:517–527. https://doi.org/10.1039/D0NA00398K

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, **ong C, Huang H et al (2021) 2D Ti3 C2 Tx MXenes: visible black but infrared white materials. Adv Mater. https://doi.org/10.1002/adma.202103054

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mashtalir O, Cook KM, Mochalin VN et al (2014) Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J Mater Chem A 2:14334–14338. https://doi.org/10.1039/C4TA02638A

    Article  CAS  Google Scholar 

  10. Ren CE, Hatzell KB, Alhabeb M et al (2015) Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J Phys Chem Lett 6:4026–4031. https://doi.org/10.1021/acs.jpclett.5b01895

    Article  CAS  PubMed  Google Scholar 

  11. Dillon AD, Ghidiu MJ, Krick AL et al (2016) Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv Funct Mater 26:4162–4168. https://doi.org/10.1002/adfm.201600357

    Article  CAS  Google Scholar 

  12. Khlyustova A, Sirotkin N, Kraev A et al (2021) Parameters of underwater plasma as a factor determining the structure of oxides (Al, Cu, and Fe). Materialia 16:101081. https://doi.org/10.1016/j.mtla.2021.101081

    Article  CAS  Google Scholar 

  13. Indarto A, Yang DR, Choi J-W et al (2007) CCl4 decomposition by gliding arc plasma: role of C2 compounds on products distribution. Chem Eng Commun 194:1111–1125. https://doi.org/10.1080/00986440701293363

    Article  CAS  Google Scholar 

  14. Sirotkin NA, Khlyustova AV, Titov VA et al (2020) Synthesis and photocatalytic activity of WO3 nanoparticles prepared by underwater impulse discharge. Plasma Chem Plasma Process 40:571–587. https://doi.org/10.1007/s11090-019-10048-z

    Article  CAS  Google Scholar 

  15. Harilal SS, Issac RC, Bindhu CV et al (1997) Optical emission studies of species in laser-produced plasma from carbon. J Phys D Appl Phys 30:1703–1709. https://doi.org/10.1088/0022-3727/30/12/003

    Article  CAS  Google Scholar 

  16. Batukaev T, Bilera I, Krashevskaya G, Lebedev Y (2023) Physical and chemical phenomena during the production of hydrogen in the microwave discharge generated in liquid hydrocarbons with the barbotage of various gases. Processes 11:2292. https://doi.org/10.3390/pr11082292

    Article  CAS  Google Scholar 

  17. Cruden BA, Rao MVVS, Sharma SP, Meyyappan M (2002) Neutral gas temperature estimates in an inductively coupled CF4 plasma by fitting diatomic emission spectra. J Appl Phys 91:8955–8964. https://doi.org/10.1063/1.1474614

    Article  CAS  Google Scholar 

  18. Bai B, Sawin HH, Cruden BA (2006) Neutral gas temperature measurements of high-power-density fluorocarbon plasmas by fitting swan bands of C2 molecules. J Appl Phys. https://doi.org/10.1063/1.2159545

    Article  Google Scholar 

  19. Carbone E, D’Isa F, Hecimovic A, Fantz U (2020) Analysis of the C2 (d3Πg–a3Πu) Swan bands as a thermometric probe in CO2 microwave plasmas. Plasma Sources Sci Technol 29:055003. https://doi.org/10.1088/1361-6595/ab74b4

    Article  CAS  Google Scholar 

  20. Titov VA, Rybkin VV, Smirnov SA et al (2006) Experimental and theoretical studies on the characteristics of atmospheric pressure glow discharge with liquid cathode. Plasma Chem Plasma Process 26:543–555. https://doi.org/10.1007/s11090-006-9014-6

    Article  CAS  Google Scholar 

  21. Cyber Wit Diatomic (2011) Database and simulation program. www.cyber-wit.com

  22. Parigger C, Plemmons DH, Hornkohl JO, Lewis JWL (1994) Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system. J Quant Spectrsc Radiat Transfer 52:707–711. https://doi.org/10.1016/0022-4073(94)90036-1

    Article  CAS  Google Scholar 

  23. Griem HR (1963) Validity of local thermal equilibrium in plasma spectroscopy. Phys Rev 131:1170–1176

    Article  Google Scholar 

  24. Kunze HJ (2009) Introduction to plasma spectroscopy, vol. 56. Springer Science and Business Media. https://doi.org/10.1007/978-3-642-02233-3

  25. Shen VK, Siderius DW, Krekelberg WP, Hatch H (eds) (2024) NIST standard reference simulation website, NIST standard reference database number 173, National Institute of Standards and Technology Gaithersburg MD 20899 https://doi.org/10.18434/T4M88Q. Retrieved 13 Jan 2024

  26. Konjević N, Lesage A, Fuhr JR, Wiese WL (2002) Experimental stark widths and shifts for spectral lines of neutral and ionized atoms (a critical review of selected data for the period 1989 through 2000). J Phys Chem Ref Data 31:819–927. https://doi.org/10.1063/1.1486456

    Article  CAS  Google Scholar 

  27. Hermann J, Thomann AL, Boulmer-Leborgne C et al (1995) Plasma diagnostics in pulsed laser TiN layer deposition. J Appl Phys 77:2928–2936. https://doi.org/10.1063/1.358708

    Article  CAS  Google Scholar 

  28. Dimitrijevic MS (1993) Electron-impact widths of four- and five-times charged ion lines of astrophysical importance. Astron Astrophys Suppl Ser 100:237–241

    CAS  Google Scholar 

  29. Tankosić D, Popović LC, Dimitrijević MS (2001) Electron-impact stark broadening parameters for Ti II and Ti III spectral lines. At Data Nucl Data Tables 77:277–310. https://doi.org/10.1006/adnd.2000.0856

    Article  CAS  Google Scholar 

  30. Manrique J, Aguilera JA, Aragón C (2016) Experimental Stark widths and shifts of Ti ii spectral lines. Mon Not R Astron Soc 462:1501–1507. https://doi.org/10.1093/mnras/stw1641

    Article  CAS  Google Scholar 

  31. Konjević N, Ivković M, Sakan N (2012) Hydrogen Balmer lines for low electron number density plasma diagnostics. Spectrochim Acta Part B At Spectrosc 76:16–26. https://doi.org/10.1016/j.sab.2012.06.026

    Article  CAS  Google Scholar 

  32. Nikiforov AY, Leys C, Gonzalez MA, Walsh JL (2015) Electron density measurement in atmospheric pressure plasma jets: stark broadening of hydrogenated and non-hydrogenated lines. Plasma Sources Sci Technol 24:034001. https://doi.org/10.1088/0963-0252/24/3/034001

    Article  CAS  Google Scholar 

  33. Djurović S, Konjević N (2009) On the use of non-hydrogenic spectral lines for low electron density and high pressure plasma diagnostics. Plasma Sources Sci Technol 18:035011. https://doi.org/10.1088/0963-0252/18/3/035011

    Article  CAS  Google Scholar 

  34. Olney TN, Cann NM, Cooper G, Brion CE (1997) Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules. Chem Phys 223:59–98. https://doi.org/10.1016/S0301-0104(97)00145-6

    Article  CAS  Google Scholar 

  35. Alhabeb M, Maleski K, Anasori B et al (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29:7633–7644. https://doi.org/10.1021/acs.chemmater.7b02847

    Article  CAS  Google Scholar 

  36. Han M, Yin X, Wu H et al (2016) Ti3 C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl Mater Interfaces 8:21011–21019. https://doi.org/10.1021/acsami.6b06455

    Article  CAS  PubMed  Google Scholar 

  37. Hantanasirisakul K, Zhao M, Urbankowski P et al (2016) Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv Electron Mater. https://doi.org/10.1002/aelm.201600050

    Article  Google Scholar 

  38. Hu T, Wang J, Zhang H et al (2015) Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study. Phys Chem Chem Phys 17:9997–10003. https://doi.org/10.1039/C4CP05666C

    Article  CAS  PubMed  Google Scholar 

  39. Liang L, Yang R, Han G et al (2020) Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2x MXene. ACS Appl Mater Interfaces 12:2644–2654. https://doi.org/10.1021/acsami.9b18504

    Article  CAS  PubMed  Google Scholar 

  40. Xue Q, Zhang H, Zhu M et al (2017) Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater. https://doi.org/10.1002/adma.201604847

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cao Y, Deng Q, Liu Z et al (2017) Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC Adv 7:20494–20501. https://doi.org/10.1039/C7RA00184C

    Article  CAS  Google Scholar 

  42. Lee E, VahidMohammadi A, Prorok BC et al (2017) Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl Mater Interfaces 9:37184–37190. https://doi.org/10.1021/acsami.7b11055

    Article  CAS  PubMed  Google Scholar 

  43. Tang M, Li J, Wang Y et al (2022) Surface terminations of MXene: synthesis, characterization, and properties. Symmetry (Basel) 14:2232. https://doi.org/10.3390/sym14112232

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SEM-EDS, XRD, Raman and FTIR measurements were performed in the center for joint use of scientific equipment “The upper Volga region center of physico-chemical research”.

Funding

This work is supported by the Russian Science Foundation under grant 24-23-00146.

Author information

Authors and Affiliations

Authors

Contributions

NS—wrote the main manuscript text and prepared Figures, performed an experiment to determine the properties of the discharge and synthesize the material. AK—discussed the results, AA—developed the general concept of the work. All authors reviewed the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Nikolay Sirotkin.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirotkin, N., Khlyustova, A. & Agafonov, A. Plasma-Liquid Synthesis as a New Method for the Production of MXenes. Plasma Chem Plasma Process (2024). https://doi.org/10.1007/s11090-024-10483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11090-024-10483-7

Keywords

Navigation