Log in

Simulation of Light Intensity of VUV Lamp Based on Inductively Coupled Plasma Discharge in Low-pressure Kr-He Mixture

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The vacuum ultraviolet (VUV) light source derived from the Kr-He discharge is widely used for organic analysis, however the relevant model that greatly facilitates the design of high-performance VUV light sources remains to be developed. This study explores a model for simulating the light intensity of the VUV lamps based on the inductively coupled plasma (ICP) discharge in the low-pressure Kr-He mixture. Two typical ICP based light sources, i.e., a 13.56 MHz VUV lamp with an external coil and a 2.65 MHz VUV lamp with an internal coil, were successfully simulated with the COMSOL Multiphysics software coupled with a fluid model. The rate coefficients of the main reactions involved in the production of VUV radiations from Kr-He plasma were summarized and input in the model. The concentrations of Kr*(3P1) and Kr*(1P1), which are main VUV-generation species, were set as output to evaluate the overall light intensity of the VUV lamp. As a result, the optimal designing parameters (the length and density of the coil and the radius of the lamp) as well as operating parameters (the input power, the pressure inside the lamp, and the mixing ratio of Kr to He) were obtained for the maximum light intensity. The reliability of the model was further verified by comparing the measured photon flux with the simulated concentrations of Kr*(3P1) and Kr*(1P1) as functions of the pressure and mixing ratio of Kr-He mixture, which showed good agreements in variation tends. The model provides a great convenience for the development of ICP based VUV lamp with high light intensity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. Couch DE, Hickstein DD, Winters DG, Backus SJ, Kirchner MS, Domingue SR, Ramirez JJ, Durfee CG, Murnane MM, Kapteyn HC (2020) Ultrafast 1 MHz vacuum-ultraviolet source via highly cascaded harmonic generation in negative-curvature hollow-core fibers. Optica 7:832–837

    Article  CAS  Google Scholar 

  2. Gray JM, Bossert J, Shyur Y, Ben S, Briles TC, Lewandowski HJ (2021) Characterization of a vacuum ultraviolet light source at 118 nm. J Chem Phys 154:024201

    Article  CAS  PubMed  Google Scholar 

  3. Tseng ML, Semmlinger M, Zhang M, Arndt C, Huang TT, Yang J, Kuo HY, Su VC, Chen MK, Chu CH, Cerjan B, Tsai DP, Nordlander P, Halas NJ (2022) Vacuum ultraviolet nonlinear metalens. Sci Adv 8:eabn5644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chini M, Wang XW, Cheng Y, Wang H, Wu Y, Cunningham E, Li PC, Heslar J, Telnov DA, Chu SI, Chang ZH (2014) Coherent phase-matched VUV generation by field-controlled bound states. Nat Photonics 8:437–441

    Article  CAS  Google Scholar 

  5. Cingoz A, Yost DC, Allison TK, Ruehl A, Fermann ME, Hartl I, Ye J (2012) Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482:68–71

    Article  PubMed  Google Scholar 

  6. Eich S, Stange A, Carr AV, Urbancic J, Popmintchev T, Wiesenmayer M, Jansen K, Ruffing A, Jakobs S, Rohwer T, Hellmann S, Chen C, Matyba P, Kipp L, Rossnagel K, Bauer M, Murnane MM, Kapteyn HC, Mathias S, Aeschlimann M (2014) Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:Sapphire lasers. J Electron Spectrosc Relat Phenom 195:231–236

    Article  CAS  Google Scholar 

  7. Song K, Ahn B, Jung E, Lee Y-I, Ko S (2007) Enhancement of the detection sensitivity for volatile organic compounds by using an annular type photoionization detector and a pre-concentration system. Anal Chim Acta 583:210–215

    Article  CAS  PubMed  Google Scholar 

  8. Dorfner R, Ferge T, Yeretzian C, Kettrup A, Zimmermann R (2004) Laser mass spectrometry as on-line sensor for industrial process analysis: process control of coffee roasting. Anal Chem 76:1386–1402

    Article  CAS  PubMed  Google Scholar 

  9. Hanley L, Zimmermann R (2009) Light and molecular ions: the emergence of vacuum UV single-photon ionization in MS. Anal Chem 81:4174–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zimmermann R (2013) Photo ionisation in mass spectrometry: light, selectivity and molecular ions. Anal Bioanal Chem 405:6901–6905

    Article  CAS  PubMed  Google Scholar 

  11. Dang M, Liu RD, Dong FS, Liu B, Hou KY (2022) Vacuum ultraviolet photoionization on-line mass spectrometry: Instrumentation developments and applications. Trac Trends Anal Chem 149:116542

    Article  CAS  Google Scholar 

  12. Tsuruga S, Suzuki T, Takatsudo Y, Seki K, Takatsudo Y, Seki K, Yamuchi S, Kuribayashi S, Morii S (2007) On-line monitoring system of P5CDF homologues in waste incineration plants using VUV-SPI-IT-TOFMS. Environ Sci Technol 41:3684–3688

    Article  CAS  PubMed  Google Scholar 

  13. Deng H, Xu X, Wang K, Xu J, Loisel G, Wang Y, Pang H, Li P, Mai Z, Yan S, Li X, Gligorovski S (2022) The effect of human occupancy on indoor air quality through real-time measurements of key pollutants. Environ Sci Technol 56:15377–15388

    Article  CAS  PubMed  Google Scholar 

  14. Huang JY, Shu JN, Yang B, Guo YD, Zhang ZJ, Jiang K, Li Z (2021) Ultrasensitive detection of trace chemical warfare agent-related compounds by thermal desorption associative ionization time-of-flight mass spectrometry. Talanta 235:122788

    Article  CAS  PubMed  Google Scholar 

  15. Ruger CP, Tiemann O, Neumann A, Streibel T, Zimmermann R (2021) Review on evolved gas analysis mass spectrometry with soft photoionization for the chemical description of petroleum, petroleum-derived materials, and alternative feedstocks. Energy Fuels 35:18308–18332

    Article  Google Scholar 

  16. Meng SS, Li QY, Zhou ZL, Li H, Liu XP, Pan SL, Li MR, Wang L, Guo YQ, Qiu MT, Wang J (2021) Assessment of an exhaled breath test using high-pressure photon ionization time-of-flight mass spectrometry to detect lung cancer. JAMA Netw Open 4:e213486

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vaikkinen A, Haapala M, Kersten H, Benter T, Kostiainen R, Kauppila TJ (2012) Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization. Anal Chem 84:1408–1415

    Article  CAS  PubMed  Google Scholar 

  18. **e YY, Hua L, Hou KY, Chen P, Zhao WD, Chen WD, Ju BY, Li HY (2014) Long-term real-time monitoring catalytic synthesis of ammonia in a microreactor by VUV-lamp-based charge-transfer ionization time-of-flight mass spectrometry. Anal Chem 86:7681–7687

    Article  CAS  PubMed  Google Scholar 

  19. Muhlberger F, Streibel T, Wieser J, Ulrich A, Zimmermann R (2005) Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: setup and first results on cigarette smoke and human breath. Anal Chem 77:7408–7414

    Article  CAS  PubMed  Google Scholar 

  20. Muhlberger F, Saraji-Bozorgzad M, Gonin M, Fuhrer K, Zimmermann R (2007) Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source. Anal Chem 79:8118–8124

    Article  CAS  PubMed  Google Scholar 

  21. Kuribayashi S, Yamakoshi H, Danno M, Sakai S, Tsuruga S, Futami H, Morii S (2005) VUV single-photon ionization ion trap time-of-flight mass spectrometer for on-line, real-time monitoring of chlorinated organic compounds in waste incineration flue gas. Anal Chem 77:1007–1012

    Article  CAS  PubMed  Google Scholar 

  22. Shu JN, Gao SK, Li Y (2008) A VUV photoionization aerosol time-of-flight mass spectrometer with a RF-powered VUV lamp for laboratory-based organic aerosol measurements. Aerosol Sci Technol 42:110–113

    Article  CAS  Google Scholar 

  23. Sun WQ, Shu JN, Zhang P, Li Z, Li NN, Liang M, Yang B (2015) Real-time monitoring of trace-level VOCs by an ultrasensitive lamp-based VUV photoionization mass spectrometer. Atmos Meas Tech 8:4637–4643

    Article  CAS  Google Scholar 

  24. Boffard JB, Lin CC, Wang S, Wendt AE, Culver C, Radovanov S, Persing H (2015) Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures. J Vac Sci Technol A 33:021306

    Article  Google Scholar 

  25. Popovic D, Mozetic M, Vesel A, Primc G, Zaplotnik R (2021) Review on vacuum ultraviolet generation in low-pressure plasmas. Plasma Processes Polym 18:e2100061

    Article  Google Scholar 

  26. Houk RS (1986) Mass-spectrometry of inductively coupled plasmas. Anal Chem 58:97A–105A

    Article  CAS  Google Scholar 

  27. Shen CH, Shieh JM, Huang JY, Kuo HC, Hsu CW, Dai BT, Lee CT, Pan CL, Yang FL (2011) Inductively coupled plasma grown semiconductor films for low cost solar cells with improved light-soaking stability. Appl Phys Lett 99:033510

    Article  Google Scholar 

  28. Kang DJ, Kim IS, Moon JH, Lee BT (2008) Inductively coupled plasma reactive ion etching of sapphire using C2F6- and NF3-based gas mixtures. Mater Sci Semicond Process 11:16–19

    Article  Google Scholar 

  29. Lister GG, Lawler JE, Lapatovich WP, Godyak VA (2004) The physics of discharge lamps. Rev Mod Phys 76:541–598

    Article  CAS  Google Scholar 

  30. Eckert HU (1962) Diffusion theory of the electrodeless ring discharge. J Appl Phys 33:2780–2788

    Article  CAS  Google Scholar 

  31. Bogaerts A, Bultinck E, Eckert M, Georgieva V, Mao M, Neyts E, Schwaederle L (2009) Computer modeling of plasmas and plasma-surface interactions. Plasma Processes Polym 6:295–307

    Article  CAS  Google Scholar 

  32. Rajaraman K, Kushner MJ (2004) A Monte Carlo simulation of radiation trap** in electrodeless gas discharge lamps. J Phys D Appl Phys 37:1780–1791

    Article  CAS  Google Scholar 

  33. Liu Y, Zissis G, Chen YM (2013) Effect of non-maxwellian electron energy distribution functions on the simulation of an inductively coupled Ar-Hg discharge. Plasma Sources Sci Technol 22:035002

    Article  CAS  Google Scholar 

  34. Bukowski JD, Graves DB, Vitello P (1996) Two-dimensional fluid model of an inductively coupled plasma with comparison to experimental spatial profiles. J Appl Phys 80:2614–2623

    Article  CAS  Google Scholar 

  35. Curry JJ, Lister GG, Lawler JE (2002) Experimental and numerical study of a low-pressure Hg-Ar discharge at high current densities. J Phys D Appl Phys 35:2945–2953

    Article  CAS  Google Scholar 

  36. Brezmes AO, Breitkopf C (2015) Fast and reliable simulations of argon inductively coupled plasma using COMSOL. Vacuum 116:65–72

    Article  CAS  Google Scholar 

  37. Lei F, Li XP, Liu YM, Liu DL, Yang M, Yu YY (2018) Simulation of a large size inductively coupled plasma generator and comparison with experimental data. AIP Adv 8:015003

    Article  Google Scholar 

  38. Lei F, Li X, Liu D, Liu Y, Zhang S (2019) Simulation study of an inductively coupled plasma discharge with different copper coil designs and gas compositions. AIP Adv 9:085228

    Article  Google Scholar 

  39. Terentev TN, Shemakhin AY, Samsonova ES, Zheltukhin VS (2022) Frequency dependencies of the characteristics of an inductively coupled radiofrequency discharge at reduced pressure. Plasma Sources Sci Technol 31:094005

    Article  Google Scholar 

  40. Ben Halima A, Hajji S, Barkaoui G, Charrada K, Zissis G (2019) Numerical simulation of plasma kinetics in a low-pressure inductively coupled discharge in argon and mercury mixtures. IEEE Trans Plasma Sci 47:162–172

    Article  CAS  Google Scholar 

  41. Ben Halima A, Helali H, Charrada K, Zissis G (2020) Influence of the variation of current and frequency on the discharges parameters. IEEE Trans Plasma Sci 48:2042–2049

    Article  CAS  Google Scholar 

  42. Guo YD, Wang HJ, Yang B, Shu JN, Jiang K, Yu ZQ, Zhang ZJ, Li Z, Huang JY, Wei ZY (2022) An ultrasensitive SPI/PAI ion source based on a high-flux VUV lamp and its applications for the online mass spectrometric detection of sub-pptv sulfur ethers. Talanta 247:123558

    Article  CAS  PubMed  Google Scholar 

  43. Shu X, Yang B, Meng JW, Wang YF, Shu JN (2013) Vacuum ultraviolet photoionization mass spectra of typical organics contained in ambient aerosols. Spectrosc Lett 46:227–234

    Article  CAS  Google Scholar 

  44. Zayarnyi DA, L’Dov AY, Kholin IV (2014) Quenching of the resonance 5s(3P1) state of krypton atoms in collisions with krypton and helium atoms. Quantum Electron 44:1066–1070

    Article  Google Scholar 

  45. Han JD, Heaven MC (2015) Kinetics of optically pumped Kr metastables. Opt Lett 40:1310–1313

    Article  CAS  PubMed  Google Scholar 

  46. Phelps database (2022) http://www.lxcat.net

  47. Papanyan VO, Nersisyan GT, Teravetisyan SA, Tittel FK (1995) Vacuum-ultraviolet afterglow emission of rare-gases and their mixtures. J Phys B at Mol Opt Phys 28:807–823

    Article  CAS  Google Scholar 

  48. Zvereva GN (2010) Calculation of parameters of krypton plasma excited by electron beam with additional heating by high-frequency electric field. Opt Spectrosc 108:4–11

    Article  CAS  Google Scholar 

  49. Gerasimov GN, Zvereva N (1997) Numerical modelling of processes in a discharge plasma in krypton. J Opt Technol 64:15–18

    Google Scholar 

  50. Dixon AJ, Harrison MFA, Smith ACH (1976) Measurement of electron-impact ionization cross-section of helium-atoms in metastable states. J Phys B at Mol Opt Phys 9:2617–2631

    Article  CAS  Google Scholar 

  51. Benstaali W, Bachir NLD, Bendella S, Belasri A, Harrache Z, Caillier B (2020) Theoretical kinetics investigation of krypton dielectric barrier discharge for UV lamp. Plasma Chem Plasma Process 40:1585–1603

    Article  CAS  Google Scholar 

  52. Sobczynski R, Setser DW (1991) Improvements in the generation and detection of kr(3P0) and kr(3P2) atoms in a flow reactor: decay constants in he buffer and total quenching rate constants for Xe, N2, CO, H2, CF4, and CH4. J Chem Phys 95:3310–3324

    Article  CAS  Google Scholar 

  53. Schmeltekopf AL, Fehsenfeld FC (1970) De-excitation rate constants for helium metastable atoms with several atoms and molecules. J Chem Phys 53:3173–

    Article  CAS  Google Scholar 

  54. Eckstrom DJ, Nakano HH, Lorents DC, Rothem T, Betts JA, Lainhart ME, Triebes KJ, Dakin DA (1988) Characteristics of electron-beam-excited Kr2* at low-pressures as a vacuum ultraviolet source. J Appl Phys 64:1691–1695

    Article  CAS  Google Scholar 

  55. Gerasimov G, Krylov B, Loginov A, Zvereva G, Hallin R, Arnesen A, Heijkenskjold F (1998) The vacuum ultraviolet spectrum of krypton and xenon excimers excited in a cooled dc discharge. Appl Phys B Lasers Opt 66:81–90

    Article  CAS  Google Scholar 

  56. Bae HS, Whang KW (2008) Analysis of the discharge characteristics for Kr gas mixtures in an ac plasma display panel. J Korean Phys Soc 53:624–630

    Article  CAS  Google Scholar 

  57. Godyak VA, Piejak RB, Alexandrovich BM (2002) Electron energy distribution function measurements and plasma parameters in inductively coupled argon plasma. Plasma Sources Sci Technol 11:525

    Article  CAS  Google Scholar 

  58. Cheng J, Ji L, Zhu Y, Shi Y (2010) Fluid model of inductively coupled plasma etcher based on COMSOL. J Semicond 31:032004

    Article  Google Scholar 

  59. Franz G (2009) Low pressure plasmas and microstructuring technology. Springer Berlin, Heidelberg

    Book  Google Scholar 

  60. Kortshagen U, Pukropski I, Zethoff M (1994) Spatial variation of the electron-distribution function in a rf inductively-coupled plasma-experimental and theoretical-study. J Appl Phys 76:2048–2058

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 22076184); the Research Equipment Development Project of Chinese Academy of Sciences (YJKYYQ20180072); and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

ZY Methodology, Writing—original draft, Resources. ZQ-Y Formal analysis. ZW Data curation. BY Methodology, Writing—reviewing and editing, Resources. JS Validation, Supervision. HS Data curation. ZL Supervision. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Bo Yang.

Ethics declarations

Ethical Approval

This declaration is not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Yu, Z., Wei, Z. et al. Simulation of Light Intensity of VUV Lamp Based on Inductively Coupled Plasma Discharge in Low-pressure Kr-He Mixture. Plasma Chem Plasma Process 44, 547–563 (2024). https://doi.org/10.1007/s11090-023-10386-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10386-z

Keywords

Navigation