Log in

Interaction of a Pulsed Nanosecond Discharge in Air in Contact with a Suspension of Crystalline Nanocellulose (CNC)

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Plasma-liquid interactions constitute a highly active research field in terms of both fundamentals and applications. In this study, we investigate the interactions between pulsed nanosecond discharges generated in air in contact with a suspension of crystalline nanocellulose (CNC). The evolution of discharge characteristics as a function of plasma processing time is analyzed using current-voltage characteristics, optical imaging, and optical emission spectroscopy. After a certain treatment time, the discharge transits from streamer to spark-like emission. The transition moment depends on both, voltage magnitude and polarity. Furthermore, Fourier transform infrared spectroscopy reveals that plasma processing modifies the contents of amorphous and crystalline structures in CNC. Such modification is also dependent on voltage magnitude and polarity, as well as on the plasma treatment time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Bruggeman PJ et al (2016) Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25(5):053002

    Article  Google Scholar 

  2. Rezaei F et al (2019) Applications of plasma-liquid systems: a review. Materials 12(17):2751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adamovich I et al (2022) The 2022 plasma Roadmap: low temperature plasma science and technology. J Phys D 55(37):373001

    Article  Google Scholar 

  4. Kovačević VV et al (2022) Low-temperature plasmas in contact with liquids—a review of recent progress and challenges. J Phys D 55(47):473002

    Article  Google Scholar 

  5. Belmonte T et al (2014) Interaction of discharges with electrode surfaces in dielectric liquids: application to nanoparticle synthesis. J Phys D 47(22):224016

    Article  Google Scholar 

  6. Chen Q, Li J, Li Y (2015) A review of plasma–liquid interactions for nanomaterial synthesis. J Phys D 48(42):424005

    Article  Google Scholar 

  7. Chiang WH et al (2020) Microplasmas for advanced Mmterials and devices. Adv Mater 32(18):e1905508

    Article  PubMed  Google Scholar 

  8. Guo D et al (2021) Plasma-activated water production and its application in agriculture. J Sci Food Agric 101(12):4891–4899

    Article  CAS  PubMed  Google Scholar 

  9. Zhou R et al (2020) Plasma-activated water: generation, origin of reactive species and biological applications. J Phys D 53:303001

    Article  CAS  Google Scholar 

  10. Bourbeau N, Soussan L, Hamdan A (2022) Degradation of methylene blue by pulsed nanosecond discharge in Ar, O2, and N2 gaseous bubbles in water: evaluation of direct and postprocessing modes. J Vacuum Sci Technol 40(5):053003

    Article  CAS  Google Scholar 

  11. Ruamrungsri S et al (2023) Effects of using plasma-activated water as a nitrate source on the growth and nutritional quality of hydroponically grown green oak lettuces. Horticulturae 9(2):248

    Article  Google Scholar 

  12. Wu S et al (2021) Nitrate and nitrite fertilizer production from air and water by continuous flow liquid-phase plasma discharge. J Environ Chem Eng 9(2):104761

    Article  CAS  Google Scholar 

  13. Dunleavy CS et al (2009) Characterisation of discharge events during plasma electrolytic oxidation. Surf Coat Technol 203(22):3410–3419

    Article  CAS  Google Scholar 

  14. Yerokhin AL et al (2003) Discharge characterization in plasma electrolytic oxidation of aluminium. J Phys D 36(17):2110

    Article  CAS  Google Scholar 

  15. Nguyen TS et al (2022) Cr(VI) reduction by microsecond pin-to-pin discharges generated in an aqueous solution. Plasma Chem Plasma Process 42(6):1279–1290

    Article  CAS  Google Scholar 

  16. Mohammadi K, Hamdan A (2021) Spark discharges in liquid heptane in contact with silver nitrate solution: investigation of the synthesized particles. Plasma Processes Polym 18(10):2100083

    Article  CAS  Google Scholar 

  17. Velusamy T et al (2017) Ultra-small CuO nanoparticles with tailored energy-band diagram synthesized by a hybrid plasma-liquid process. Plasma Processes Polym 14(7):1600224

    Article  Google Scholar 

  18. Fauchais P et al (2013) Suspension and solution plasma spraying. J Phys D 46(22):224015

    Article  Google Scholar 

  19. Fauchais P et al (2015) Key challenges and opportunities in suspension and solution plasma spraying. Plasma Chem Plasma Process 35(3):511–525

    Article  CAS  Google Scholar 

  20. Ohad I, Mejzler D (1965) On the ultrastructure of cellulose microfibrils. J Polym Sci Part A: Gen Papers 3(1):399–406

    CAS  Google Scholar 

  21. Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15(7):2327–2346

    Article  CAS  PubMed  Google Scholar 

  22. Eichhorn SJ et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  23. Jose CC, Lovely M, Sabu TK (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers.

  24. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  25. Bakri MK, Rahman M (2021) Applications of cellulose materials and their composites. pp 267–284

  26. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  PubMed  Google Scholar 

  27. Peng BL et al (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206

    Article  CAS  Google Scholar 

  28. Miao C, Hamad WYJC (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262

    Article  CAS  Google Scholar 

  29. Islam MT, Alam MM, Zoccola M (2013) Review on modification of nanocellulose for application in composites. Int J Innovative Res Sci Eng Technol 2:5444–5451

    Google Scholar 

  30. Mariano M, Kissi NE, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B: Polym Phys 52(12):791–806

    Article  CAS  Google Scholar 

  31. Fujisawa S et al (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14(5):1541–1546

    Article  CAS  PubMed  Google Scholar 

  32. Jonoobi M et al (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20(4):991–997

    Article  CAS  Google Scholar 

  33. Lee K-Y, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 69(15):2724–2733

    Article  CAS  Google Scholar 

  34. Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA) – crystallization and mechanical property effects. Compos Sci Technol 70(5):815–821

    Article  CAS  Google Scholar 

  35. Robles E et al (2015) Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind Crops Prod 71:44–53

    Article  CAS  Google Scholar 

  36. Babaei S et al (2023) Permeation properties of a plasma-processed organosilicon-carboxymethylcellulose bilayer on fibrillated cellulosic films for sustainable packaging applications Cellulose, submitted

  37. Meunier L-F et al (2021) Modification of microfibrillated cellulosic foams in a dielectric barrier discharge at atmospheric pressure. Plasma Processes Polym 18(2):2000158

    Article  CAS  Google Scholar 

  38. Alanis A et al (2019) Plasma surface-modification of cellulose nanocrystals: a green alternative towards mechanical reinforcement of ABS. RSC Adv 9(30):17417–17424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matouk Z et al (2020) Functionalization of cellulose nanocrystal films using non-thermal atmospheric –pressure plasmas. Appl Surf Sci 511:145566

    Article  CAS  Google Scholar 

  40. Hamdan A, Diamond J, Stafford L (2020) Time-resolved imaging of pulsed positive nanosecond discharge on water surface: plasma dots guided by water surface. Plasma Sources Sci Technol 29(11):115017

    Article  Google Scholar 

  41. Herrmann A, Margot J, Hamdan A (2022) Influence of voltage and gap distance on the dynamics of the ionization front, plasma dots, produced by nanosecond pulsed discharges at water surface. Plasma Sources Sci Technol 31(4):045006

    Article  Google Scholar 

  42. Gigosos MA, González M, Cardeñoso Vn (2003) Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochimica Acta Part B: Atomic Spectroscopy 58(8):1489–1504

    Article  Google Scholar 

  43. Hamdan A, Diamond J, Herrmann A (2021) Dynamics of a pulsed negative nanosecond discharge on water surface and comparison with the positive discharge. J Phys Commun 5(3):035005

    Article  Google Scholar 

  44. Hamdan A, Ridani DA, Diamond J, Daghrir R (2020) Pulsed nanosecond air discharge in contact with water: influence of voltage polarity, amplitude, pulse width, and gap distance. J Phys D 53(35):355202

    Article  CAS  Google Scholar 

  45. Van der Horst RM et al (2012) Time-resolved optical emission spectroscopy of nanosecond pulsed discharges in atmospheric-pressure N2 and N2/H2O mixtures. J Phys D 45(34):345201

    Article  Google Scholar 

  46. Lo A et al (2017) Streamer-to-spark transition initiated by a nanosecond overvoltage pulsed discharge in air. Plasma Sources Sci Technol 26(4):045012

    Article  Google Scholar 

  47. Janda M, Machala Z, Niklová A, Martišovitš V (2012) The streamer-to-spark transition in a transient spark: a dc-driven nanosecond-pulsed discharge in atmospheric air. Plasma Sources Sci Technol 21(4):045006

    Article  Google Scholar 

  48. Lo A, Cessou A, Boubert P, Vervisch P (2014) Space and time analysis of the nanosecond scale discharges in atmospheric pressure air: I. Gas temperature and vibrational distribution function of N2 and O2. J Phys D 47(11):115201

    Article  Google Scholar 

  49. Lo A, Cessou A, Vervisch P (2014) Space and time analysis of the nanosecond scale discharges in atmospheric pressure air: II. Energy transfers during the post-discharge. J Phys D 47(11):115202

    Article  Google Scholar 

  50. Lo A, Cléon G, Vervisch P, Cessou A (2012) Spontaneous Raman scattering: a useful tool for investigating the afterglow of nanosecond scale discharges in air. Appl Phys B 107:229–242

    Article  CAS  Google Scholar 

  51. Lowke JJ (2013) Plasma predictions: past, present and future. Plasma Sources Sci Technol 22(2):023002

    Article  CAS  Google Scholar 

  52. Popov NA (2003) Formation and development of a leader channel in air. Plasma Phys Rep 29:695–708

    Article  CAS  Google Scholar 

  53. Bruggeman P, Liu J, Degroote J, Kong MG, Vierendeels J, Leys C (2008) Dc excited glow discharges in atmospheric pressure air in pin-to-water electrode systems. J Phys D 41(21):215201

    Article  Google Scholar 

  54. Poletto M, Ornaghi HL, Zattera AJ (2014) Native cellulose: structure, characterization and thermal properties. Mater (Basel) 7(9):6105–6119

    Article  Google Scholar 

  55. Hamdan A et al (2020) Pulsed nanosecond air discharge in contact with water: influence of voltage polarity, amplitude, pulse width, and gap distance. J Phys D 53(35):355202

    Article  CAS  Google Scholar 

  56. Julák J et al (2018) Contribution to the chemistry of plasma-activated water. Plasma Phys Rep 44(1):125–136

    Article  Google Scholar 

  57. Machala Z et al (2019) Chemical and antibacterial effects of plasma activated water: correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J Phys D 52(3):034002

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Science and Engineering Research Council (NSERC), PRIMA-Québec, Plasmionique Inc., and FPInnovations. Research infrastructures were funded by the Canadian Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Contributions

AH wrote the main manuscript text and prepared the Figures. TCL did the experiments under the supervision of AH and LS. JP contributed to the experimental design. MER and LS contributed to the writing and revision of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ahmad Hamdan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdan, A., Liu, T.C., Profili, J. et al. Interaction of a Pulsed Nanosecond Discharge in Air in Contact with a Suspension of Crystalline Nanocellulose (CNC). Plasma Chem Plasma Process 43, 849–865 (2023). https://doi.org/10.1007/s11090-023-10335-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10335-w

Keywords

Navigation