Log in

Coupling of Dielectric Barrier Discharge and Cu–S-1 Catalyst for Direct Oxidation of Methane to Methanol

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The industrial utilization of methane to methanol is based on the indirect pathway with syngas as an intermediate product, but the reaction conditions are very harsh and the costs in equipment and operations are extremely high. Therefore, the direct oxidation of methane to methanol (DOMTM) under mild conditions is more desirable. In this paper, coupling of non-thermal plasma and Cu–zeolite (Cu–ZSM-5 and Cu–S-1) catalysts have been studied for DOMTM. The effect of Si/Al ratios (Cu–ZSM-5 and Cu–S-1 catalysts) on the reaction performance has been investigated. Cu–S-1 catalyst exhibited the best catalytic performance, i.e., 5.8% methane conversion and 50.6% methanol selectivity. The employed catalysts have been characterized by XRD, UV–Vis, XPS and FT-IR. The results show that Cu–ZSM-5 catalysts with high Si/Al ratio are conducive to the formation of isolated Cu2+ species, and Cu–S-1 catalyst exhibits the most abundant isolated Cu2+ species. Furthermore, Cu–S-1 catalyst shows the most abundant Oads species. The plentiful surface silicon defects on S-1 is the reason why Cu–S-1 catalyst shows the most abundant isolated Cu2+ and Oads species, and these two species are interdependent to form a Si–O–Cu species, which may be the active site for DOMTM. Based on these findings, the possible catalytic mechanism was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Lange JP, Sushkevichk VL, Knorpp AJ, van Bokhoven JA (2019) Ind Eng Chem Res 58:8674–8680

    Article  CAS  Google Scholar 

  2. Dummer NF, Willock DJ, He Q, Howard MJ, Lewis RJ, Qi G, Taylor SH, Xu J, Bethell D, Kiely CJ, Hutchings GJ (2022) Chem Rev

  3. Ravi M, Ranocchiari M, van Bokhoven JA (2017) Angew Chem-Int Ed. 56:16464–16483

    Article  CAS  Google Scholar 

  4. Arnarson L, Schmidt PS, Pandey M, Bagger A, Thygesen KS, Stephens IEL (2018) J Rossmeisl Phys Chem Chem Phys 20:11152–11159

    Article  CAS  Google Scholar 

  5. Sharma R, Poelman H, Marin GB, Galvita VV (2020) Catalysts 10:194

    Article  CAS  Google Scholar 

  6. Dybkjaer I, Aasberg-Petersen K (2016) Can J Chem Eng 94:607–612

    Article  CAS  Google Scholar 

  7. Jones CJ, Taube D, Ziatdinov VR, Periana RA, Nielsen RJ, Oxgaard J, Goddard WA (2004) Angew Chem-Int Ed 43:4626–4629

    Article  CAS  Google Scholar 

  8. Michalkiewicz B (2003) Kinet Catal 44:801–805

    Article  CAS  Google Scholar 

  9. Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H (1998) Science 280:560–564

    Article  CAS  PubMed  Google Scholar 

  10. Kao LC, Hutson AC, Sen A (1991) J Am Chem Soc 113:700–701

    Article  CAS  Google Scholar 

  11. Vargaftik MN, Stolarov IP, Moiseev II (1990) J Chem Soc-Chem Commun, 1049–1050

  12. Ab Rahim MH, Forde MM, Jenkins RL, Hammond C, He Q, Dimitratos N, Lopez-Sanchez JA, Carley AF, Taylor SH, Willock DJ, Murphy DM, Kiely CJ, Hutchings GJ (2013) Angew Chem-Int Ed. 52:1280–1284

    Article  CAS  Google Scholar 

  13. Kim HJ, Huh J, Kwon YW, Park D, Yu Y, Jang YE, Lee BR, Jo E, Lee EJ, Heo Y, Lee W, Lee J (2019) Nat Catal 2:342–353

    Article  CAS  Google Scholar 

  14. Panov GI, Sobolev VI, Kharitonov AS (1990) J Mol Catal 61:85–97

    Article  CAS  Google Scholar 

  15. Sun L, Wang Y, Guan N, Li L (2019) Energy Technol 8

  16. Loenders B, Engelmann Y, Bogaerts A (2021) J Phys Chem C 125:2966–2983

    Article  CAS  Google Scholar 

  17. Whitehead JC (2016) J Phys D-Appl Phys 49:24

    Google Scholar 

  18. Nozaki T, Bogaerts A, Tu X, Sanden R (2017) Plasma Process Polym 14:6

    Article  Google Scholar 

  19. Zhou LM, Xue B, Kogelschatz U, Eliasson B (1998) Plasma Chem Plasma Process 18:375–393

    Article  CAS  Google Scholar 

  20. Larkin DW, Lobban LL, Mallinson RG (2001) Catal Today 71:199–210

    Article  CAS  Google Scholar 

  21. Nair SA, Nozaki T, Okazaki K (2007) Ind Eng Chem Res 46:3486–3496

    Article  CAS  Google Scholar 

  22. Liu M, Yi YH, Wang L, Guo HC, Bogaerts A (2019) Catalysts 9:275

    Article  Google Scholar 

  23. Neyts EC, Bogaerts A (2014) J Phys D-Appl Phys 47:224010

    Article  Google Scholar 

  24. Liu CJ, Mallinson R, Lobban L (1999) Appl Catal A: General 178:17–27

    Article  CAS  Google Scholar 

  25. Lee H, Lee D-H, Song Y-H, Choi WC, Park Y-K, Kim DH (2015) Chem Eng J 259:761–770

    Article  CAS  Google Scholar 

  26. De Rosa F, Hardacre C, Graham WG, McCullough G, Millington P, Hinde P, Goguet A (2022) Catal Today 384–386:177–186

    Article  Google Scholar 

  27. Indarto A, Choi JW, Lee H, Song HK (2008) IEEE Trans Plasma Sci 36:516–518

    Article  CAS  Google Scholar 

  28. Indarto A (2014) Ionics 20:445–449

    Article  CAS  Google Scholar 

  29. Chen L, Zhang X, Huang L, Lei L (2010) Chem Eng Technol 33:2073–2081

    Article  CAS  Google Scholar 

  30. Chen L, Zhang X, Huang L, Lei L (2010) J Nat Gas Chemi 19:628–637

    Article  CAS  Google Scholar 

  31. Lašič Jurković D, Puliyalil H, Pohar A, Likozar B (2019) Int J Energy Res 43:8085–8099

    Google Scholar 

  32. Gorky F, Nambo A, Carreon ML (2021) J CO2 Util 51:101642

    Article  CAS  Google Scholar 

  33. Chawdhury P, Wang Y, Ray D, Mathieu S, Wang N, Harding J, Bin F, Tu X, Subrahmanyam C (2021) Appl Catal B: Environ 284:119735

    Article  CAS  Google Scholar 

  34. Yi YH, Li SK, Cui ZL, Hao YZ, Zhang Y, Wang L, Liu P, Tu X, Xu XM, Guo HC, Bogaerts A (2021) Appl Catal B: Environ 296:120384

    Article  CAS  Google Scholar 

  35. Bozbag SE, Alayon EMC, Pecháček J, Nachtegaal M, Ranocchiari M, van Bokhoven JA (2016) Catal Sci Technol 6:5011–5022

    Article  CAS  Google Scholar 

  36. Kustrowski P, Chmielarz L, Dziembaj R, Cool P, Vansant EF (2005) J Phys Chem B 109:11552–11558

    Article  CAS  PubMed  Google Scholar 

  37. Li YH, Deng JL, Song WY, Liu J, Zhao Z, Gao ML, Wei YC, Zhao L (2016) J Phys Chem C 120:14669–14680

    Article  CAS  Google Scholar 

  38. Cao Y, Lan L, Feng X, Yang ZZ, Zou S, Xu HD, Li ZQ, Gong MC, Chen YQ (2015) Catal Sci Technol 5:4511–4521

    Article  CAS  Google Scholar 

  39. Li BT, Luo X, Zhu YR, Wang XJ (2015) Appl Surf Sci 359:609–620

    Article  CAS  Google Scholar 

  40. Gaudin P, Dorge S, Nouali H, Kehrli D, Michelin L, Josien L, Fioux P, Vidal L, Soulard M, Vierling M, Moliere M, Brilhac JF (2015) J Patarin Appl Catal-Gen 504:110–118

    Article  CAS  Google Scholar 

  41. Dai WL, Sun Q, Deng JF, Wu D, Sun YH (2001) Appl Surf Sci 177:172–179

    Article  CAS  Google Scholar 

  42. Bennici S, Gervasini A, Ravasio N, Zaccheria F (2003) J Phys Chem B 107:5168–5176

    Article  CAS  Google Scholar 

  43. Sun H, Wang H, Qu Z (2023) ACS Catal 13:1077–1088

    Article  CAS  Google Scholar 

  44. Bonelli B, Forni L, Aloise A, Nagy JB, Fornasari G, Garrone E, Gedeon A, Giordano G, Trifirò F (2007) Microporous and Mesoporous Mater 101:153–160

    Article  CAS  Google Scholar 

  45. Zambrano G, Riascos H, Prieto P, Restrepo E, Devia A, Rincón C (2003) Surf Coat Technol 172:144–149

    Article  CAS  Google Scholar 

  46. Nicolazo F, Goullet A, Granier A, Vallée C, Turban G, Grolleau B (1998) Surf Coat Technol 98:1578–1583

    Article  CAS  Google Scholar 

  47. Granier A, Vervloet M, Aumaille K, Vallée C (2003) Plasma Sources Sci Technol 12:89–96

    Article  CAS  Google Scholar 

  48. De Bie C, Verheyde B, Martens T, van Dijk J, Paulussen S, Bogaerts A (2011) Plasma Process Polym 8:1033–1058

    Article  Google Scholar 

  49. Woo JM, Seo JY, Kim H, Lee DH, Park YC, Yi CK, Park YS, Moon JH (2018) Ultrason Sonochem 44:146–151

    Article  CAS  PubMed  Google Scholar 

  50. Liu G, Liu J, He N, Miao C, Wang J, **n Q, Guo H (2018) RSC Adv 8:18663–18671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fanning PE, Vannice MA (2002) J Catal 207:166–182

    Article  CAS  Google Scholar 

  52. Zhang Z, Ma X, Zhang J, He F, Wang S (2005) J Mol Catal A: Chem 227:141–146

    Article  CAS  Google Scholar 

  53. Da Costa P, Modén B, Meitzner GD, Lee DK, Iglesia E (2002) Phys Chem Chem Phys 4:4590–4601

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the the National Natural Science Foundation of China [Grant ID: 22272015], PetroChina Innovation Foundation [Grant ID: 2018D-5007-0501], and Fundamental Research Funds for Central Universities [Grant ID: DUT21JC40].

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Yanhui Yi.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 643 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, H., Liu, X., Hao, Y. et al. Coupling of Dielectric Barrier Discharge and Cu–S-1 Catalyst for Direct Oxidation of Methane to Methanol. Plasma Chem Plasma Process 43, 1963–1978 (2023). https://doi.org/10.1007/s11090-023-10333-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10333-y

Keywords

Navigation