Log in

The Effect of Air Plasma Activated Liquid on Uropathogenic Bacteria

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Urinary tract infections (UTI) are often caused by resistant uropathogenic bacteria and can lead to sepsis or chronic renal failure. Cold plasma activated liquid (PAL) has known antimicrobial properties with applications in wound disinfection. The aim of our study is to evaluate PAL as a potential treatment of UTI in an animal model. Based on in vitro tests using a uropathogenic E. coli strain, PAL generated in the atmospheric air Glow Discharge plasma had the strongest antimicrobial effect in comparison to other types of PAL and was further tested in vivo. Transurethral PAL application had no effect on bacterial load in the 24 h mouse model of UTI. Upon investigating the treatment failure, we found that urine completely prevented any antimicrobial effects of PAL and PAL treatment of neutrophils resulted in their reduced viability and loss of mitochondrial membrane potential. These results do not support the hypothesis that the in vitro antimicrobial effects of PAL can be translated to the in vivo model of UTI. This could be explained by the attenuating effect of urine on the antimicrobial activity of PAL and its toxicity on immune cells. The detailed mechanism of the effects of urine on PAL requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Dubuc A et al (2018) Use of cold-atmospheric plasma in oncology: a concise systematic review. Ther Adv Med Oncol 10:1758835918786475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Gilmore BF et al (2018) Cold plasmas for biofilm control: opportunities and challenges. Trends Biotechnol 36(6):627–638

    Article  CAS  PubMed  Google Scholar 

  3. Scholtz V et al (2015) Nonthermal plasma—a tool for decontamination and disinfection. Biotechnol Adv 33(6 Pt 2):1108–1119

    Article  CAS  PubMed  Google Scholar 

  4. Assadian O et al (2019) Effects and safety of atmospheric low-temperature plasma on bacterial reduction in chronic wounds and wound size reduction: a systematic review and meta-analysis. Int Wound J 16(1):103–111

    Article  PubMed  Google Scholar 

  5. Arndt S et al (2013) Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS One 8(11):79325

    Article  CAS  Google Scholar 

  6. Kupke LS et al (2021) Cold atmospheric plasma promotes the immunoreactivity of granulocytes in vitro. Biomolecules 11(6):902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bekeschus S et al (2016) Neutrophil extracellular trap formation is elicited in response to cold physical plasma. J Leukoc Biol 100(4):791–799

    Article  CAS  PubMed  Google Scholar 

  8. Bekeschus S et al (2018) Physical plasma and leukocytes—immune or reactive? Biol Chem 400(1):63–75

    Article  PubMed  CAS  Google Scholar 

  9. Bekeschus S et al (2018) Cold physical plasma-treated buffered saline solution as effective agent against pancreatic cancer cells. Anticancer Agents Med Chem 18(6):824–831

    Article  CAS  PubMed  Google Scholar 

  10. Bauer G et al (2019) Cold atmospheric plasma and plasma-activated medium trigger RONS-based tumor cell apoptosis. Sci Rep 9(1):14210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Freund E et al (2019) Physical plasma-treated saline promotes an immunogenic phenotype in CT26 colon cancer cells in vitro and in vivo. Sci Rep 9(1):634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhang J et al (2019) Discharge plasma-activated saline protects against abdominal sepsis by promoting bacterial clearance. Shock 52(1):92–101

    Article  CAS  PubMed  Google Scholar 

  13. Boehm D et al (2016) Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma. Sci Rep 6:21464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chauvin J et al (2019) Elucidation of in vitro cellular steps induced by antitumor treatment with plasma-activated medium. Sci Rep 9(1):4866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Griseti E, Merbahi N, Golzio M (2020) Anti-cancer potential of two plasma-activated liquids: implication of long-lived reactive oxygen and nitrogen species. Cancers (Basel) 12(3):721

    Article  CAS  Google Scholar 

  16. Sardella E et al (2021) Plasma treated water solutions in cancer treatments: the contrasting role of RNS. Antioxidants Basel 10(4):605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sersenova D et al (2021) Selective apoptotic effect of plasma activated liquids on human cancer cell lines. Molecules 26(14):4254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sklias K, Santos Sousa J, Girard PM (2021) Role of short- and long-lived reactive species on the selectivity and anti-cancer action of plasma treatment in vitro. Cancers 13(4):615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Boxem W et al (2017) Anti-cancer capacity of plasma-treated PBS: effect of chemical composition on cancer cell cytotoxicity. Sci Rep 7(1):16478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kaushik NK et al (2018) Biological and medical applications of plasma-activated media, water and solutions. Biol Chem 400(1):39–62

    Article  PubMed  CAS  Google Scholar 

  21. Laurita R et al (2015) Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clin Plasma Med 3(2):53–61

    Article  Google Scholar 

  22. Shen J et al (2016) Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci Rep 6:28–505

    Article  CAS  Google Scholar 

  23. Traylor MJ et al (2011) Long-term antibacterial efficacy of air plasma-activated water. J Phys D 44(47):472001

    Article  CAS  Google Scholar 

  24. Yost AD, Joshi SG (2015) Atmospheric nonthermal plasma-treated PBS inactivates E. coli by oxidative DNA damage. PLoS ONE 10(10):e0139903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sihra N et al (2018) Nonantibiotic prevention and management of recurrent urinary tract infection. Nat Rev Urol 15(12):750–776

    Article  PubMed  Google Scholar 

  26. Hung CS, Dodson KW, Hultgren SJ (2009) A murine model of urinary tract infection. Nat Protoc 4(8):1230–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mobley HL et al (1990) Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun 58(5):1281–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Machala Z et al (2004) DC glow discharges in atmospheric pressure air. J Adv Oxid Technol 7(2):133–137

    Google Scholar 

  29. Machala Z et al (2019) Chemical and antibacterial effects of plasma activated water: correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J Phys D 52:3402

    Article  CAS  Google Scholar 

  30. Machala Z, Hensel K, Jedlovský I, Leštinská L, Foltin V, Martišovitš V, Morvová M (2007) Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. J Mol Spectrosc 243(2):194–201

    Article  CAS  Google Scholar 

  31. Machala Z et al (2013) Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects. Plasma Processes Polym 10(7):649–659

    Article  CAS  Google Scholar 

  32. Chen TP, Liang J, Su TL (2018) Plasma-activated water: antibacterial activity and artifacts? Environ Sci Pollut Res Int 25(27):26699–26706

    Article  CAS  PubMed  Google Scholar 

  33. Li Y et al (2017) In vitro studies of the antimicrobial effect of non-thermal plasma-activated water as a novel mouthwash. Eur J Oral Sci 125(6):463–470

    Article  CAS  PubMed  Google Scholar 

  34. Ma R et al (2015) Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J Hazard Mater 300:643–651

    Article  CAS  PubMed  Google Scholar 

  35. Zhou R et al (2018) Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chem 20(23):5276–5284

    Article  CAS  Google Scholar 

  36. Pan J et al (2017) Investigation of cold atmospheric plasma-activated water for the dental unit waterline system contamination and safety evaluation in vitro. Plasma Chem Plasma Process 37(4):1091–1103

    Article  CAS  Google Scholar 

  37. Chen T-P, Su T-L, Liang J (2016) Plasma-activated solutions for bacteria and biofilm inactivation. Curr Bioact Compd 13:59–65

    Article  CAS  Google Scholar 

  38. Nicol MJ et al (2020) Antibacterial effects of low-temperature plasma generated by atmospheric-pressure plasma jet are mediated by reactive oxygen species. Sci Rep 10(1):3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Han L et al (2016) Assessing stress responses to atmospheric cold plasma exposure using Escherichia coli knock-out mutants. J Appl Microbiol 121(2):352–363

    Article  CAS  PubMed  Google Scholar 

  40. Yang Y et al (2020) Inactivation of antibiotic resistant Escherichia coli and degradation of its resistance genes by glow discharge plasma in an aqueous solution. Chemosphere 252:126476

    Article  CAS  PubMed  Google Scholar 

  41. Thai KH, Thathireddy A, Hsieh MH (2010) Transurethral induction of mouse urinary tract infection. J Vis Exp 42:20. https://doi.org/10.3791/2070

    Article  Google Scholar 

  42. Olson PD, Hruska KA, Hunstad DA (2016) Androgens enhance male urinary tract infection severity in a new model. J Am Soc Nephrol 27(6):1625–1634

    Article  CAS  PubMed  Google Scholar 

  43. Lin WC, Lai TY, Wu YE (2000) Scavenging of reactive oxygen species by a urinary preparation. Am J Chin Med 28(2):251–258

    Article  CAS  PubMed  Google Scholar 

  44. Crestale L et al (2018) Cold atmospheric pressure plasma treatment modulates human monocytes/macrophages responsiveness. Plasma 1(2):261–276

    Article  Google Scholar 

  45. Sabbatini M, Magnelli V, Reno F (2021) NETosis in wound healing: when enough is enough. Cells 10(3):494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the grants funded by the Slovak Research and Development Agency (Grant Number APVV-18-0287 and APVV-17-0382) and by the Grant Agency of Ministry of Education, Science, Research and Sport of the Slovak Republic VEGA 1/0234/18.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Peter Celec, Zdenko Machala; Methodology: Michal Pastorek, Slavomír Pásztor, Nadja Ivašková, Jakub Petrus; Formal analysis and investigation: Barbora Konečná, Mária Suchoňová, Ľubomíra Tóthová; Writing—original draft preparation: Michal Pastorek, Ľubomíra Tóthová; Writing—review and editing: Roman Gardlík; Funding acquisition: Zdenko Machala, Ľubomíra Tóthová; Resources: Zdenko Machala; Supervision: Peter Celec.

Corresponding author

Correspondence to Ľubomíra Tóthová.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 340 kb)

Supplementary file2 (DOCX 1310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastorek, M., Suchoňová, M., Konečná, B. et al. The Effect of Air Plasma Activated Liquid on Uropathogenic Bacteria. Plasma Chem Plasma Process 42, 561–574 (2022). https://doi.org/10.1007/s11090-022-10239-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10239-1

Keywords

Navigation