Log in

Investigation of Cold Atmospheric Plasma-Activated Water for the Dental Unit Waterline System Contamination and Safety Evaluation in Vitro

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The disinfection of the inner surface of a medical device has long been a challenge for the central sterile supply departments. Dental unit waterline system (DUWLs) foster the attachment of microorganisms and development of biofilm, which lead to continuous contamination of the outlet water from dental units; this contamination may be responsible for a potential risk of infection due to the exposure of patients and medical staff. The present study investigated the disinfection effects of cold atmospheric plasma-activated water (CAPAW) on DUWLs using a model of 5-day-old Enterococcus faecalis biofilm. The results showed that the colony-forming unit was reduced from 107 to 0 after 5 min of treatment. The physicochemical properties of CAPAW were evaluated, including the pH value, oxidation reduction potential, and NO radical. The results showed that the inactivation mechanisms were mainly triggered by the reactive oxygen/nitrogen species. Additionally, CAPAW had a metal corrosion rate same as that of deionized water. We conclude that CAPAW can be applied as an appropriate alternative disinfectant against biofilm contamination of DUWLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Toroglu MS, Haytac MC, Koksal F (2001) Angle Orthod 71:299–306

    CAS  Google Scholar 

  2. Panagakos FS, Lassiter T, Kumar E (2001) J N J Dent Assoc 72:20–25

    CAS  Google Scholar 

  3. Martin MV (1987) Br Dent J 163:152–154

    Article  CAS  Google Scholar 

  4. Ricci ML, Fontana S, Pinci F, Fiumana E, Pedna MF, Farolfi P, Sabattini MA, Scaturro M (2012) Lancet 379:684

    Article  Google Scholar 

  5. American Dental Association, Statement on Dental Unit Waterlines (2012). http://www.ada.org/1856.aspx

  6. Centers for Disease Control and Prevention, Guidelines for Infection Control in Dental Health-Care Settings (2003) MMWR 52 (No. RR-17)

  7. Barbeau J, Tanguay R, Faucher E, Avezard C, Trudel L, Côté L, Prévost AP (1996) Appl Environ Microbiol 62:3954–3959

    CAS  Google Scholar 

  8. Molinari JA (1999) Compend Contin Educ Dent 20:358–362

    CAS  Google Scholar 

  9. Szymanska J, Sitkowska J (2008) Dutkiewicz. J Ann Agric Environ Med 15:173–179

    Google Scholar 

  10. Uzel A, Cogulu D, Oncag O (2008) Int J Dent Hyg 6:43–47

    Article  CAS  Google Scholar 

  11. Arvand M, Hack A (2013) Eur J Microbiol Immunol (Bp) 3:49–52

    Article  Google Scholar 

  12. Wirthlin MR, Marshall GW Jr, Rowland RW (2003) J Periodontol 74:1595–1609

    Article  Google Scholar 

  13. Michałkiewicz M, Ginter-Kramarczyk D, Kruszelnicka IK (2015) Med Pr 66:763–770

    Article  Google Scholar 

  14. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB (2006) J Endod 32:93–98

    Article  Google Scholar 

  15. Sedgley CM, Lennan SL, Clewell DB (2004) Mol Oral Microbiol 19:95–101

    Article  CAS  Google Scholar 

  16. Rôças IN, Siqueira JF Jr, Santos KR (2004) J Endodont 30:315–320

    Article  Google Scholar 

  17. Meiller TF, Depaola LG, Kelley JIJI, Baqui AAMA, Turng BF, Falkler WA (1999) J Am Dent Assoc 130:65–72

    Article  CAS  Google Scholar 

  18. Lin SM, Svoboda KK, Giletto A, Seibert J, Puttaiah R (2011) Eur J Dent 5:7–59

    CAS  Google Scholar 

  19. Liaqat I, Sabri AN (2008) Curr Microbiol 56:619–624

    Article  CAS  Google Scholar 

  20. Montebugnoli L, Chersoni S, Prati C, Dolei G (2004) J Hosp Infect 56:297–304

    Article  CAS  Google Scholar 

  21. Plamondon TJ, Mills SE, Sherman LR, Nemeth J, Puttaiah R (1996) J Dent Res 75:414

    Google Scholar 

  22. Isbary G, Shimizu T, Li YF, Stolz W, Thomas HM, Morfill GE, Zimmermann JL (2013) Expert Rev Med Devic 1:367–377

    Article  Google Scholar 

  23. Traylor MJ, Pavlovich MJ, Karim S, Hait P, Sakiyama Y, Clark DS, Graves DB (2011) J Phys D Appl Phys 44:472001

    Article  Google Scholar 

  24. Pavlovich MJ, Chang HW, Sakiyama Y, Clark DS, Graves DB (2013) J Phys D Appl Phys 46:145202

    Article  Google Scholar 

  25. Khlyustova A, Khomyakova N, Sirotkin N, Marfin Y (2016) Plasma Chem Plasma P 36:1–10

    Article  Google Scholar 

  26. Brisset JL, Pawlat J (2016) Plasma Chem Plasma P 36:355–381

    Article  CAS  Google Scholar 

  27. Fridman G, Dobrynin D, Friedman G, Friedman A (2009) New J Phys 11:115020

    Article  Google Scholar 

  28. Zhu AM, Sun Q, Niu JH, Song ZM (2005) Plasma Chem Plasma P 2:371–386

    Article  Google Scholar 

  29. Kamgang-Youbi G, Herry JM, Meylheuc T, Brisset JL, Bellon-Fontaine MN, Doubla A, Naïtali M (2009) Lett Appl Microbiol 48:13–18

    Article  CAS  Google Scholar 

  30. Yu S, Chen QZ, Liu JH, Wang KL, Jiang Z, Sun ZL, Zhang J, Fang J (2015) Appl Phys Lett 106:244101

    Article  Google Scholar 

  31. Yu S, Wang K, Zuo S, Liu J, Zhang J, Fang J (2015) Phys Plasmas 22:1284

    Google Scholar 

  32. Schnabel U, Andrasch M, Weltmann KD, Ehlbeck J (2014) Plasma Process Polym 11:110–116

    Article  CAS  Google Scholar 

  33. Ma RN, Feng HQ, Liang YD, Zhang Q, Tian Y, Su B, Zhang J, Fang J (2013) J Phys D Appl Phys 46:285401

    Article  Google Scholar 

  34. Oehmigen K, Hähnel M, Brandenburg R, Wilke C, Weltmann KD, Woedtke TV (2010) Plasma Process Polym 7:250–257

    Article  CAS  Google Scholar 

  35. The National Standard GB/10124-88 of the People’s Republic of China (2008)

  36. Tuttlebee CM, O’Donnell MJ, Keane CT, Russell RJ, Sullivan DJ, Falkiner F, Coleman DC (2002) J Hosp Infect 52:192–205

    Article  CAS  Google Scholar 

  37. Gilbert P, Das JR, Jones MV, Allison DG (2001) J Appl Microbiol 91:248–254

    Article  CAS  Google Scholar 

  38. Chate RA (2006) Brit Dent J 201:565–569

    Article  CAS  Google Scholar 

  39. Venkatadri R, Peters RW (1993) Hazard Waste Hazard Mater 10:107–149

    Article  CAS  Google Scholar 

  40. Ikawa S, Kitano K, Hamaguchi S (2010) Plasma Process Polym 7:33–42

    Article  CAS  Google Scholar 

  41. Park G, Ryu YH, Hong YJ, Choi EH, Uhm HS (2012) Appl Phys Lett 100:1–4

    Google Scholar 

  42. Shainsky N, Dobrynin D, Ercan U, Joshi SG, Ji H, Brooks A, Fridman G, Cho Y, Fridman A (2012) Plasma Process Polym. doi:10.1002/ppap.201100084

    Google Scholar 

  43. Pereira CI, Matos D, Romão MVS, Crespo MTB (2009) Appl Environ Microbiol 75:1904–1907

    Article  Google Scholar 

  44. Zhang Q, Zhuang J, von Woedtke T, Kolb JF, Zhang J, Fang J, Weltmann KD (2014) Appl Phys Lett 105:1–4

    Google Scholar 

  45. Puttaiah R, Karpay RI, Fabre C, Sherman L, Nemeth JF, Mills SE, Plamondon TJ (1998) Microchem J 59:333–340

    Article  CAS  Google Scholar 

  46. Flahaut S, Hartke A, Giard JC, Benachour A, Boutibonnes P, Auffray Y (1996) FEMS Microbiol Lett 138:49–54

    Article  CAS  Google Scholar 

  47. Cotter PD, Hill C (2003) Microbiol Mol Biol R 67:429–453

    Article  CAS  Google Scholar 

  48. Gordon CA, Hodges NA, Marriott C (1998) J Antimicrob Chemother 22:667–674

    Article  Google Scholar 

  49. Xue Z, Sendamangalam VR, Gruden CL, Seo Y (2012) Environ Sci Technol 46:13212–13219

    Article  CAS  Google Scholar 

  50. Brisset JL, Benstaali B, Moussa D, Fanmoe J, Njoyim-Tamungang E (2011) Plasma Sour Sci Technol 20:034021

    Article  Google Scholar 

  51. Ikawa S, Tani A, Nakashima Y, Kitano K (2016) J Phys D Appl Phys 49:425401

    Article  Google Scholar 

  52. McPherson LL (1993) Water Eng Manag 140:29–31

    Google Scholar 

  53. Zhang Q, Ma RN, Tian Y, Su B, Wang KL, Yu S, Zhang J, Fang J (2016) Environ Sci Technol 50:3184–3192

    Article  CAS  Google Scholar 

  54. Park JY, Yin NL (2002) J Phys Chem 92:6294–6302

    Article  Google Scholar 

  55. Brisset JL, Hnatiuc E (2012) Plasma Chem Plasma P 32:655–674

    Article  CAS  Google Scholar 

  56. Van Gils CAJ, Hofmann S, Boekema BKHL, Brandenburg R (2013) J Phys D Appl Phys 46:175203

    Article  Google Scholar 

  57. Cheeseman KH, Slater TF (1993) Br Med Bull 49:481–493

    Article  CAS  Google Scholar 

  58. Brisset JL, Moussa D, Doubla A, Hnatiuc E, Hnatiuc B, Kamgang-Youbi GK, Herry JM, Naïtali M, Bellon-Fontaine MN (2008) Ind Eng Chem Res 47:5761–5781

    Article  CAS  Google Scholar 

  59. Ma RN, Wang GM, Tian Y, Wang KL, Zhang J, Fang J (2015) J Hazard Mater 300:643–651

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the 985 program of Peking University. The authors are highly thankful to Peking University for providing financial assistance of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Li, Y.L., Liu, C.M. et al. Investigation of Cold Atmospheric Plasma-Activated Water for the Dental Unit Waterline System Contamination and Safety Evaluation in Vitro. Plasma Chem Plasma Process 37, 1091–1103 (2017). https://doi.org/10.1007/s11090-017-9811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9811-0

Keywords

Navigation