Log in

Direct Oxidation of Methane to Methanol Over Cu-Based Catalyst in an AC Dielectric Barrier Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this paper, the conversion of methane to methanol on CuO/Al2O3 and Mo–CuO/Al2O3 catalysts in a plasma reactor was tested. A comparison between catalytic and plasma-catalytic systems had been made in tested temperature range of 50–300°C. Experimental results showed that plasma-catalytic system demonstrated a much better methane conversion than catalytic system in tested temperature range and Mo–CuO/Al2O3 revealed a higher catalytic activity than CuO/Al2O3 for methanol synthesis. Furthermore, an Arrhenius plot was made in order to deduce the mechanism of plasma activation, which revealed that the presence of plasma decreased the activation energy for both catalysts. In the case of Mo-CuO/Al2O3 catalyst, the enhanced activity for methanol synthesis was assumed due to the oxygen vacancies on Mo–CuO/Al2O3 catalyst, which can utilize plasma-induced species to improve the catalytic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Michael M, Thomas S, Herrmann WA (2002) Angew Chem Int Ed 41:1745

    Article  Google Scholar 

  2. Shiota Y, Yoshizawa K (2000) J Am Chem Soc 122:12317

    Article  Google Scholar 

  3. Maack M, Friis-Jensen H, Sckerl S, Larsen JH, Chorkendorff I (2003) Top Catal 22:151

    Article  Google Scholar 

  4. Schulz H (1999) Appl Catal A 186:3

    Article  Google Scholar 

  5. Aasberg-Petersen K, Bak Hansen JH, Christensen TS, Dybkjaer I, Christensen PS, Stub Nielsen C, Winter Madsen SEL, Rostrup-Nielsen JR (2001) Appl Catal A 221:379

    Article  Google Scholar 

  6. Taylor SH, Hargreaves JSJ, Hutchings GJ, Joyner RW, Lembacher CW (1998) Catal Today 42:217

    Article  Google Scholar 

  7. Michalkiewicz B (2004) Appl Catal A 277:147

    Article  Google Scholar 

  8. Omata K, Fukuoka N, Fujimoto K (1994) Ind Eng Chem Res 33:784

    Article  Google Scholar 

  9. Nozaki T, Hattori A, Okazaki K (2004) Catal Today 98:607

    Article  Google Scholar 

  10. Aghamir FM, Matin NS, Jalili AH, Esfarayeni MH, Khodagholi MA, Ahmadi R (2004) Plasma Sources Sci Technol 13:707

    Article  ADS  Google Scholar 

  11. Cooray V, Rahman M (2005) J Electrostat 63:977

    Article  Google Scholar 

  12. Subrahmanyam C, Renken A, Kiwi-Minsker L (2007) Chem Eng J 134:78

    Article  Google Scholar 

  13. Yamamoto T (1997) J Electrostat 42:227

    Article  Google Scholar 

  14. Morent R, Leys C, Dewulf J, Neirynck D, Van Durme J, Van Langenhove H (2007) J Adv Oxid Technol 10:127

    Google Scholar 

  15. Nagao I, Nishida M, Yukimura K, Kambara S, Maruyama T (2002) Vacuum 65:481

    Article  Google Scholar 

  16. Eliasson B, Kogelschatz U (1991) Plasma Sci IEEE Trans 19:309

    Article  ADS  Google Scholar 

  17. Kunhardt EE (2000) Plasma Sci IEEE Trans 28:189

    Article  ADS  Google Scholar 

  18. Kim S-S, Kwon B, Kim J (2007) Catal Commun 8:2204

    Article  Google Scholar 

  19. Pietruszka B, Heintze M (2004) Catal Today 90:151

    Article  Google Scholar 

  20. Da Costa P, Marques R, Da Costa S (2008) Appl Catal B 84:214

    Article  Google Scholar 

  21. Wang C-H, Lin S-S, Liou S-B, Weng H-S (2002) Chemosphere 49:389

    Article  Google Scholar 

  22. Kado S, Sekine Y, Nozaki T, Okazaki K (2004) Catal Today 89:47

    Article  Google Scholar 

  23. Demidyuk V, Whitehead J (2007) Plasma Chem Plasma Process 27:85

    Article  Google Scholar 

  24. Strunk J, Kähler K, **a X, Comotti M, Schüth F, Reinecke T, Muhler M (2009) Appl Catal A 359:121

    Article  Google Scholar 

  25. Widmann D, Leppelt R, Behm RJ (2007) J Catal 251:437

    Article  Google Scholar 

Download references

Acknowledgments

We appreciated the financial support to this study by the National Natural Science Foundation of China (No. 90610005, 20836008 and U0633003). The Project of science and technology department of Zhejiang province of China (2007C13061) and MOST project of China (No. 2007AA06Z339; No. 2008BAC32B06; No. 2007AA06A409) are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-cheng Lei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Zhang, Xw., Chen, L. et al. Direct Oxidation of Methane to Methanol Over Cu-Based Catalyst in an AC Dielectric Barrier Discharge. Plasma Chem Plasma Process 31, 67–77 (2011). https://doi.org/10.1007/s11090-010-9272-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-010-9272-1

Keywords

Navigation