Log in

Artificial Intelligence Computation to Establish Relationships Between APS Process Parameters and Alumina–Titania Coating Properties

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Modeling the behavior of air plasma spray (APS) process, one of the challenges nowadays is to identify the parameter interdependencies, correlations and individual effects on coating properties, characteristics and influences on the in-service properties. APS modeling requires a global approach which considers the relationships between coating characteristics/ in-service properties and process parameters. Such an approach permits to reduce the development costs. This is why a robust methodology is needed to study these interrelated effects. Artificial intelligence based on fuzzy logic and artificial neural network concepts offers the possibility to develop a global approach to predict the coating characteristics so as to reach the required operating parameters. The model considered coating properties (porosity) and established the relationships with power process parameters (arc current intensity, total plasma gas flow rate, hydrogen content) on the basis of artificial intelligence rules. Consequently, the role and the effects of each power process parameter were discriminated. The specific case of the deposition of alumina–titania (Al2O3–TiO2, 13% by weight) by APS was considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fauchais P, Montavon G, Vardelle M, Cedelle J (2006) Surf Coat Technol 201:1908–1921

    Article  Google Scholar 

  2. Smith RW, Knight R (1995) JOM 47(8):32–39

    Google Scholar 

  3. Moreau C, Gougeon P, Lamontagne M, Lacasse V, Vaudreuil G, Cielo P (1994) In: Berndt CC, Sampath S (eds) Thermal spray industrial applications. ASM International, Materials Park, pp 431–437

    Google Scholar 

  4. Prystay M, Gougeon P, Moreau C (2001) J Therm Spray Technol 10:67–75

    Article  ADS  Google Scholar 

  5. Smith RD, Harlan HU (1976) J Am Ceram Soc 55:979–982

    Google Scholar 

  6. Nelson MM, Illingworth WT (1991) A practical guide to neural networks, 3rd edn. Addison-Wesley, New York

    MATH  Google Scholar 

  7. Bhadeshia HKDH (1999) ISIJ Int 39:966–979

    Article  Google Scholar 

  8. Kanta A-F, Montavon G, Planche M-P, Coddet C (2006) Adv Eng Mater 8 (7):628–635

    Article  Google Scholar 

  9. Friis M, Persson C, Wigren J (2001) Surf Coat Technol 141(1–2):115–127

    Article  Google Scholar 

  10. Ogaji SOT, Marinai L, Sampath S, Singh R, Prober SD (2005) Appl Energy 82:81–89

    Article  Google Scholar 

  11. Liang M, Yeap T, Hermansyah A, Rahmati S (2003) Int J Mach Tools Manufact 43:1497–1508

    Article  Google Scholar 

  12. Mamdani EH (1974) Proc IEE 121:1585–1588

    Google Scholar 

  13. Mamdani EH, Assilian S (1975) Int J Man-Machine Studies 7:1–13

    MATH  Google Scholar 

  14. Zadeh LA (1973) IEEE Trans Syst Man Cybern 3:28–44

    MATH  MathSciNet  Google Scholar 

  15. Eker I, Torun Y (2006) Energy Conv Manag 47:377–394

    Article  Google Scholar 

  16. Fraichard T, Garnier P (2001) Robot Auton Syst 34:1–22

    Article  Google Scholar 

  17. Pham DT, **ng L (1995) Neural networks for identification, prediction and control, 2nd printing. Springer, London

  18. Attoh-Okine NO (1999) Adv Eng Softw 30(4):291–302

    Article  Google Scholar 

  19. Bishop CM (1995) Neural Comput 7(1):108–116

    Article  MathSciNet  Google Scholar 

  20. Celikoglu HB (2006) Math Comput Model 44:640–658

    Article  MATH  Google Scholar 

  21. Kanta A-F, Montavon G, Planche M-P, Coddet C (2007) Adv Eng Mater 9:105–113

    Article  Google Scholar 

  22. Reich Y, Barai SV (1999) Artif Intell Eng 13(3):257–272

    Article  Google Scholar 

  23. Romeo LM, Gareta R (2006) Appl Therm Eng 26:1530–1536

    Article  Google Scholar 

  24. Varacalle DJ, Herman H, Bancke GA, Riggs WL (1992) Surf Coat Technol 54–55:19–24

    Article  Google Scholar 

  25. Fisher IA (1972) Int Met Rev 17:117–129

    Google Scholar 

  26. Steeper TJ, Varacalle DJ, Wilson GC, Riggs WL, Rotolico AJ, Nerz JE (1992) In: Berndt CC (ed) Thermal spray: international advances in coatings technology. ASM International, Materials Park, pp 415–420

    Google Scholar 

  27. Pfender E (1988) Surf Coat Technol 34:1–14

    Article  Google Scholar 

  28. Marsh DR, Weare NE, Walker DL (1961) J Met 2:473–478

    Google Scholar 

Download references

Acknowledgements

The French National Agency for Innovation (ANVAR) and the CNRS MRCT “Plasma network” (Réseau Plasma Froid) are gratefully acknowledged for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdoul-Fatah Kanta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanta, AF., Montavon, G., Planche, MP. et al. Artificial Intelligence Computation to Establish Relationships Between APS Process Parameters and Alumina–Titania Coating Properties. Plasma Chem Plasma Process 28, 249–262 (2008). https://doi.org/10.1007/s11090-007-9116-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-007-9116-9

Keywords

Navigation