Log in

Interleaving by Parts: Join Decompositions of Interleavings and Join-Assemblage of Geodesics

  • Published:
Order Aims and scope Submit manuscript

Abstract

Metrics of interest in topological data analysis (TDA) are often explicitly or implicitly in the form of an interleaving distance \({d_{\textrm{I}}}\) between poset maps (i.e. order-preserving maps), e.g. the Gromov-Hausdorff distance between metric spaces can be reformulated in this way. We propose a representation of a poset map \(\textbf{F}:{\mathcal {P}}\rightarrow {\mathcal {Q}}\) as a join (i.e. supremum) \(\bigvee _{b\in B} \varvec{\textbf{F}}_{b}\) of simpler poset maps \(\varvec{\textbf{F}}_{b}\) (for a join dense subset \({B}\subset {\mathcal {Q}}\)) which in turn yields a decomposition of \({d_{\textrm{I}}}\) into a product metric. The decomposition of \({d_{\textrm{I}}}\) is simple, but its ramifications are manifold: (1) We can construct a geodesic path between any poset maps \(\textbf{F}\) and \(\textbf{G}\) with \({d_{\textrm{I}}}(\varvec{\textbf{F}},\varvec{\textbf{G}})<\varvec{\infty }\) by assembling geodesics between all \(\varvec{\textbf{F}}_{b}\)s and \(\varvec{\textbf{G}}_{b}\)s via the join operation. This construction generalizes at least three constructions of geodesic paths that have appeared in the literature. (2) We can extend the Gromov-Hausdorff distance to a distance between simplicial filtrations over an arbitrary poset with a flow, preserving its universality and geodesicity. (3) We can clarify equivalence between several known metrics on multiparameter hierarchical clusterings. (4) We can illuminate the relationship between the erosion distance by Patel and the graded rank function by Betthauser, Bubenik, and Edwards, which in turn takes us to an interpretation on the representation \(\bigvee _{b} \varvec{\textbf{F}}_{b}\) as a generalization of persistence landscapes and graded rank functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article.

Code Availability

Code sharing not applicable to this article.

References

  1. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Edelsbrunner, H., Harer, J.: Persistent homology-a survey. Contemp. Math. 453, 257–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bubenik, P., Scott, J.A.: Categorification of persistent homology. Discrete Comput. Geom. 51(3), 600–627 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.Y.: Proximity of persistence modules and their diagrams. In: Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry, pp. 237–246 (2009). ACM

  6. Botnan, M., Lesnick, M.: Algebraic stability of zigzag persistence modules. Algebr. Geom. Topol. 18(6), 3133–3204 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Botnan, M., Curry, J., Munch, E.: A relative theory of interleavings. ar**v preprint ar**v:2004.14286 (2020)

  8. Bubenik, P., De Silva, V., Scott, J.: Metrics for generalized persistence modules. Found. Comput. Math. 15(6), 1501–1531 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Curry, J.: Sheaves, Cosheaves and Applications. PhD thesis, University of Pennsylvania (2013)

  10. De Silva, V., Munch, E., Patel, A.: Categorified Reeb graphs. Discrete Comp. Geom. 55(4), 854–906 (2016)

    Article  Google Scholar 

  11. de Silva, V., Munch, E., Stefanou, A.: Theory of interleavings on categories with a flow. Theory Appl. Categ. 33(21), 583–607 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Lesnick, M.: The theory of the interleaving distance on multidimensional persistence modules. Found. Comput. Math. 15(3), 613–650 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Scoccola, L.N.: Locally persistent categories and metric properties of interleaving distances. PhD thesis, The University of Western Ontario (2020)

  14. Bjerkevik, H.B., Botnan, M.B., Kerber, M.: Computing the interleaving distance is NP-hard. Found. Comput. Math. 1–35 (2019)

  15. Bjerkevik, H.B., Kerber, M.: Asymptotic improvements on the exact matching distance for 2-parameter persistence. ar**v preprint ar**v:2111.10303 (2021)

  16. Cerri, A., Fabio, B.D., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 36(12), 1543–1557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kerber, M., Lesnick, M., Oudot, S.: Exact Computation of the Matching Distance on 2-Parameter Persistence Modules. In: 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 129, pp. 46–14615. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.SoCG.2019.46. http://drops.dagstuhl.de/opus/volltexte/2019/10450

  18. Landi, C.: The rank invariant stability via interleavings. In: Research in Computational Topology, pp. 1–10. Springer, Switzerland (2018)

  19. Patel, A.: Generalized persistence diagrams. J. Appl. Comput. Topol. 1(3–4), 397–419 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kozlov, D.: Combinatorial Algebraic Topology vol. 21. Springer, (2008)

  21. Mémoli, F.: A distance between filtered spaces via tripods. ar**v preprint ar**v:1704.03965 (2017)

  22. Mémoli, F., Okutan, O.B.: Quantitative simplification of filtered simplicial complexes. Discrete Comput. Geom. 65, 554–583 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Blumberg, A.J., Lesnick, M.: Universality of the homotopy interleaving distance, Transaction of the American Mathematical Society, https://doi.org/10.1090/tran/8738

  24. Bauer, U., Landi, C., Mémoli, F.: The Reeb graph edit distance is universal. Foundations of Computational Mathematics (2020)

  25. Kim, W., Mémoli, F., Smith, Z.: Analysis of dynamic graphs and dynamic metric spaces via zigzag persistence. In: Topological Data Analysis, pp. 371–389. Springer, ??? (2020)

  26. Carlsson, G., Mémoli, F.: Characterization, stability and convergence of hierarchical clustering methods. J. Mach. Learn. Res. 11(Apr), 1425–1470 (2010)

  27. Cai, C., Kim, W., Mémoli, F., Wang, Y.: Elder-rule staircodes for augmented metric spaces. In: Proceedings of the Thirty-sixth International Symposium on Computational Geometry (SoCG 2020) (2020)

  28. Carlsson, G.,Mémoli, F.: Multiparameter hierarchical clustering methods. In: Classification as a Tool for Research, pp. 63–70. Springer, ??? (2010)

  29. Rolle, A., Scoccola, L.: Stable and consistent density-based clustering. ar** structure. In: Workshop on Algorithms and Data Structures, pp. 219–230 (2013). Springer

  30. Kim, W., Mémoli, F.: Formigrams: Clustering summaries of dynamic data. In: Proceedings of the Thirtieth Canadian Conference on Computational Geometry, pp. 180–188 (2018)

  31. Billera, L.J., Holmes, S.P., Vogtmann, K.: Geometry of the space of phylogenetic trees. Adv. Appl. Math. 27(4), 733–767 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sokal, R.R., Rohlf, F.J.: The comparison of dendrograms by objective methods. Taxon, 33–40 (1962)

  33. Woese, C.R., Kandler, O., Wheelis, M.L.: Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc. Nat. Acad. Sci. 87(12), 4576–4579 (1990)

    Article  Google Scholar 

  34. Griffiths, R.C., Marjoram, P.: An ancestral recombination graph. In: Donnelly, P. and Tavaré, S. (Eds.), Progress in Population Genetics and Human Evolution, IMA Volumes in Mathematics and Its Applications vol. 87, pp. 257–270. Springer, Berlin (1997)

  35. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts. Algorithms and Applications. Cambridge University Press, Cambridge, UK (2010)

    Book  Google Scholar 

  36. Martin, S.H., Dasmahapatra, K.K., Nadeau, N.J., Salazar, C., Walters, J.R., Simpson, F., Blaxter, M., Manica, A., Mallet, J., Jiggins, C.D.: Genome-wide evidence for speciation with gene flow in heliconius butterflies. Genome Res. 23(11), 1817–1828 (2013)

    Article  Google Scholar 

  37. Parida, L., Utro, F., Yorukoglu, D., Carrieri, A.P., Kuhn, D., Basu, S.: Topological signatures for population admixture. In: International Conference on Research in Computational Molecular Biology, pp. 261–275 (2015). Springer

  38. Gasparovic, E., Munch, E., Oudot, S., Turner, K., Wang, B., Wang, Y.: Intrinsic interleaving distance for merge trees. ar**v preprint ar**v:1908.00063 (2019)

  39. Morozov, D., Beketayev, K., Weber, G.: Interleaving distance between merge trees. In: Proceedings of Topology-Based Methods in Visualization (2013)

  40. Bauer, U., Munch, E., Wang, Y.: Strong Equivalence of the Interleaving and Functional Distortion Metrics for Reeb Graphs. In: Arge, L., Pach, J. (eds.) 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), vol. 34, pp. 461–475. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2015). https://doi.org/10.4230/LIPIcs.SOCG.2015.461

  41. Chambers, E.W., Munch, E., Ophelders, T.: A Family of Metrics from the Truncated Smoothing of Reeb Graphs. In: 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 189, pp. 22–12217. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.SoCG.2021.22. https://drops.dagstuhl.de/opus/volltexte/2021/13821

  42. Stefanou, A.: Tree decomposition of Reeb graphs, parametrized complexity, and applications to phylogenetics. J. Appl. Comput. Topol. (2020). https://doi.org/10.1007/s41468-020-00051-1

    Article  MathSciNet  MATH  Google Scholar 

  43. Kim, W., Mémoli, F.: Extracting persistent clusters in dynamic data via Möbius inversion. ar**v preprint ar**v:1712.04064v5 (2022), to appear in Discrete Comput. Geom.

  44. Weibel, C.A.: The K-book: An Introduction to Algebraic K-theory, vol. 145. American Mathematical Society, Providence, RI (2013)

    MATH  Google Scholar 

  45. Kim, W., Mémoli, F.: Generalized persistence diagrams for persistence modules over posets. J. Appl. Comput. Topol. 5(4), 533–581 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  46. Puuska, V.: Erosion distance for generalized persistence modules. Homol. Homotopy Appl. 22(1), 233–254 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kim, W., Mémoli, F.: Spatiotemporal persistent homology for dynamic metric spaces. Discrete Comput. Geom. 66(3), 831–875 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  48. Clause, N., Kim, W.: Spatiotemporal Persistent Homology Computation Tool. https://github.com/ndag/PHoDMSs (2020)

  49. Bubenik, P., De Silva, V., Scott, J.: Interleaving and Gromov-Hausdorff distance. ar**v preprint ar**v:1707.06288 (2017)

  50. Betthauser, L., Bubenik, P., Edwards, P.B.: Graded persistence diagrams and persistence landscapes. Discrete Comput. Geom. 67(1), 203–230 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  51. Bubenik, P., et al.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(1), 77–102 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Chazal, F., Cohen-Steiner, D., Guibas, L.J., Mémoli, F., Oudot, S.Y.: Gromov-Hausdorff stable signatures for shapes using persistence. Comput. Graph. Forum 28(5), 1393–1403 (2009). Wiley Online Library

  53. Chazal, F., De Silva, V., Oudot, S.: Persistence stability for geometric complexes. Geom. Dedicata 173(1), 193–214 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Erné, M., Šešelja, B., Tepavčević, A.: Posets generated by irreducible elements. Order 20(1), 79–89 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. Roman, S.: Lattices and Ordered Sets. Springer, New York (2008)

    MATH  Google Scholar 

  56. Erné, M.: Compact generation in partially ordered sets. J. Aust. Math. Soc. 42(1), 69–83 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  57. Curry, J., Patel, A.: Classification of constructible cosheaves. Theory Appl. Categ. 35(27), 1012–1047 (2020)

    MathSciNet  MATH  Google Scholar 

  58. Cardona, G., Mir, A., Rosselló, F., Rotger, L., Sánchez, D.: Cophenetic metrics for phylogenetic trees, after Sokal and Rohlf. BMC Bioinform. 14(1), 3 (2013)

    Article  Google Scholar 

  59. Munch, E., Stefanou, A.: The \(\ell ^{\infty }\)-cophenetic metric for phylogenetic trees as an interleaving distance. In: Research in Data Science, pp. 109–127. Springer, Switzerland (2019)

  60. Bauer, U., Lesnick, M.: Induced matchings and the algebraic stability of persistence barcodes. J. Comput. Geom. 6(2), 162–191 (2015)

    MathSciNet  MATH  Google Scholar 

  61. Serra, J.: Hausdorff distances and interpolations. Comput. Imaging Vis. 12, 107–114 (1998)

    MathSciNet  MATH  Google Scholar 

  62. Chowdhury, S.: Geodesics in persistence diagram space. ar**v preprint ar**v:1905.10820 (2019)

  63. Chazal, F., De Silva, V., Glisse, M., Oudot, S.: The Structure and Stability of Persistence Modules, vol. 10. Springer, Switzerland (2016)

    Book  MATH  Google Scholar 

  64. Burago, D., Burago, I.D., Burago, Y., Ivanov, S.A., Ivanov, S.: A Course in Metric Geometry, vol. 33. American Mathematical Soc, Providence, Rhode Island (2001)

    MATH  Google Scholar 

  65. Chowdhury, S., Mémoli, F.: Explicit geodesics in Gromov-Hausdorff space. Electron. Res. Announc. 25, 48–59 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  66. Munkres, J.R.: Elements of Algebraic Topology. CRC Press, Boca Raton, FL, USA (2018)

    Book  MATH  Google Scholar 

  67. Barmak, J.A.: On quillen’s theorem a for posets. J. Comb. Theory Ser. A 118(8), 2445–2453 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  68. Bakke Bjerkevik, H.: On the stability of interval decomposable persistence modules. Discrete Comput. Geom. 66(1), 92–121 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  69. Schmiedl, F.: Computational aspects of the gromov-hausdorff distance and its application in non-rigid shape matching. Discrete Comput. Geom. 57(4), 854–880 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  70. Erickson, J.: Algorithms. Independent Publish, Urbana-Champaign, IL (2019)

    Google Scholar 

  71. McCleary, A., Patel, A.: Edit distance and persistence diagrams over lattices. SIAM J. Appl. Algebra Geom. 6(2), 134–155 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  72. Mac Lane, S.: Categories for the Working Mathematician, vol. 5. Springer, New York (2013)

    MATH  Google Scholar 

  73. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Courier Corporation, Mineola, NY (2001)

    MATH  Google Scholar 

  74. Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence diagrams. J. Exp. Algorithmics 22, 1–20 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

WK thanks Parker Edwards, Alex McCleary and Justin Curry for beneficial discussions. We also thank Zane Smith for hel** with Theorem E.1. The authors thank the anonymous reviewer for their suggestions and corrections.

Funding

WK and FM were supported by NSF through grants DMS-1723003, CCF-1740761, RI-1901360, and CCF-1526513. AS was supported by NSF through grants CCF-1740761, DMS-1440386 and RI-1901360.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Woo** Kim.

Ethics declarations

Conflict of Interest/Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W., Mémoli, F. & Stefanou, A. Interleaving by Parts: Join Decompositions of Interleavings and Join-Assemblage of Geodesics. Order (2023). https://doi.org/10.1007/s11083-023-09643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11083-023-09643-9

Keywords

Mathematics Subject Classification (2010)

Navigation