Log in

Design of a high-efficiency perovskite solar cell based on photonic crystal in the absorption layer

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Perovskite solar cells (PSCs) have gained a lot of attention due to their high power conversion efficiency (PCE), low-cost materials, and simple manufacturing process. These cells can be improved further by using photonic crystals (PCs) which can increase light absorption. A PC-based perovskite solar cell was designed and simulated in this study using FDTD and CHARGE solvers of the Lumerical software, and its components showed better values compared to other solar cell structures. The study investigated the effect of a two-dimensional PC structure on the solar cell’s light absorption. The materials used as photonic crystals were perovskite/rutile TiO2 and perovskite/InAs, and various radii and lattice constants were examined. A comparison between each type of PC with the flat structure was conducted. The simulation results indicate that the most efficient structure was found to be the perovskite/InAs structure with a radius of 40 nm and a lattice constant of 200 nm, resulting in an improvement in the performance of the perovskite solar cell. The flat solar cell structure exhibited a short-circuit current of 24.01 mA/cm2 and an efficiency of 17.34%. However, by adding a rutile TiO2 photonic crystal structure, the short circuit current and efficiency increased to 27.12 mA/cm2 and 19.94%, respectively. The efficiency and short circuit current could be further improved by adding an InAs photonic crystal structure, resulting in values of 20.97% and 28.03 mA/cm2, respectively. The improved performance of PC-based perovskite solar cells compared to PSC was due to the slow photon effect that occurred around the photonic bandgap, causing light to be trapped, and resulting in more electron-hole pairs being produced. In summary, this study demonstrates the potential to improve the performance of perovskite solar cells by utilizing photonic crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  • Ahmad, W., et al.: Thin-film carbon nitride (C2N)-based solar cell optimization considering Zn1 – xMgxO as a buffer layer. Processes. 11(1), 91 (2022)

    Article  Google Scholar 

  • Anderson, C.M., Giapis, K.P.: Larger two-dimensional photonic band gaps. Phys. Rev. Lett. 77(14), 2949 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Arisman, C.: Nitric Oxide Chemistry and Velocity slip Effects in Hypersonic Boundary Layers. University of Calgary (2014)

  • Asadzade, A., Miandoab, S.A.: Design and simulation of 3D perovskite solar cells based on titanium dioxide nanowires to achieve high-efficiency. Sol. Energy. 228, 550–561 (2021)

    Article  ADS  CAS  Google Scholar 

  • Bao, Y., Wang, D., Hui, W., Gu, L., Chao, L., Song, L.: Honeycomb-type TiO2 films toward a high tolerance to Optical paths for Perovskite Solar cells. ChemSusChem. 16(2), e202201749 (2023). https://doi.org/10.1002/cssc.202201749

    Article  CAS  PubMed  Google Scholar 

  • Choi, D.H., Nam, S.K., Jung, K., Moon, J.H.: 2D photonic crystal nanodisk array as electron transport layer for highly efficient perovskite solar cells. Nano Energy. 56, 365–372 (2019)

    Article  CAS  Google Scholar 

  • Daem, N., et al.: Inverse Opal Photonic nanostructures for enhanced light harvesting in CH3NH3PbI3Perovskite solar cells. ACS Appl. Nano Mater. 5(9), 13583–13593 (2022). https://doi.org/10.1021/acsanm.2c03274

    Article  CAS  Google Scholar 

  • Farid, Y., Khan, A.D., Farooq, W., Khan, M., Khan, A.D., Modeling and Analysis of Novel Tandem Solar Cells, in: International Conference on Electrical, Communication, and Computer Engineering (ICECCE), IEEE, 2019, pp. 1–6. (2019)

  • Farooq, W., Alzahrani, A., Ghoneim, S.S.M.: Computational optimization and optical analysis of thin-film organic solar cells for high efficiency. J. Comput. Electron. 22(3), 867–873 (2023)

    Article  CAS  Google Scholar 

  • Ghahremanirad, E., Olyaee, S., Abdollahi Nejand, A., Nazari, P., Ahmadi, V., Abedi, K.: Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network. Sol. Energy. 169, 498–504 (2018a)

    Article  ADS  CAS  Google Scholar 

  • Ghahremanirad, E., Olyaee, S., Abdollahi.Nejand, A., Ahmadi, V., Abedi, K.: Hexagonal array of mesoscopic HTM based perovskite solar cell with embedded plasmonic nanoparticles. Phys. Status Solidi B. 255, 1–8 (2018b)

    Article  Google Scholar 

  • Ghahremanirad, E., Olyaee, S., Hedayati, M.: The influence of embedded plasmonic nanostructures on optical absorption of perovskite solar cells. Photonics. 6, 1–8 (2019)

    Article  Google Scholar 

  • Gobeli, G.W., Allen, F.G.: Photoelectric properties of cleaved GaAs, GaSb, InAs, and InSb surfaces; comparison with Si and Ge. Phys. Rev. 137(1), A245 (1965)

    Article  ADS  Google Scholar 

  • Golabi, P., et al.: Efficient colorful perovskite solar cells designed by 2D and 3D ordered titania inverse opals. J. Power Sources. 512, 230488 (2021)

    Article  CAS  Google Scholar 

  • Gupta, N.D.: Absorption enhancement in hole interface layer free perovskite solar cells using periodic photonic nanostructures. Opt. Laser Technol. 115, 20–31 (2019)

    Article  ADS  CAS  Google Scholar 

  • Hajjiah, A., Badran, H., Kandas, I., Shehata, N.: Perovskite solar cell with added gold/silver nanoparticles: Enhanced optical and electrical characteristics. Energies. 13(15), 3854 (2020)

    Article  CAS  Google Scholar 

  • Hajjiah, A., Badran, H., Shehata, N., Omran, M., Kandas, I.: The Effect of different AR nanostructures on the Optical performance of Organic–Inorganic Halide Perovskite Semiconductor Solar Cell. Plasmonics. 17(2), 581–595 (2022)

    Article  CAS  Google Scholar 

  • Hasanah, L., et al.: Dimensional optimization of tio2 nanodisk photonic crystals on lead iodide (Mapbi3) perovskite solar cells by using fdtd simulations. Appl. Sci. 12(1), 351 (2022). https://doi.org/10.3390/app12010351

    Article  CAS  Google Scholar 

  • Hatamvand, M., et al.: The role of different dopants of Spiro-OMeTAD hole transport material on the stability of perovskite solar cells: A mini review. Vacuum, 112076 (2023)

  • Jarin, S., et al.: Predicting the crystal structure and lattice parameters of the perovskite materials via different machine learning models based on basic atom properties. Crystals. 12(11), 1570 (2022)

    Article  CAS  Google Scholar 

  • Jeon, N.J., et al.: Compositional engineering of perovskite materials for high-performance solar cells. Nature. 517(7535), 476–480 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Khan, J., et al.: Multi-dimensional anatase TiO2 materials: Synthesis and their application as efficient charge transporter in perovskite solar cells. Sol. Energy. 184, 323–330 (2019)

    Article  ADS  CAS  Google Scholar 

  • Kim, D.I., et al.: Enhancing the optical properties using hemisphere TiO2 photonic crystal as the electron acceptor for perovskite solar cell. Appl. Surf. Sci. 487, 409–415 (2019)

    Article  ADS  CAS  Google Scholar 

  • Kim, J.Y., Lee, J.-W., Jung, H.S., Shin, H., Park, N.-G.: High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.-W., Lee, T.-Y., Yoo, P.J., Grätzel, M., Mhaisalkar, S., Park, N.-G.: Rutile TiO 2-based perovskite solar cells. J. Mater. Chem. A. 2(24), 9251–9259 (2014)

    Article  CAS  Google Scholar 

  • Li, Z., Zhou, F., Wang, Q., Ding, L., **, Z.: Approaches for thermodynamically stabilized CsPbI3 solar cells. Nano Energy. 71, 104634 (2020)

    Article  CAS  Google Scholar 

  • Li, P., Jiang, X., Huang, S., Liu, Y., Fu, N.: Plasmonic perovskite solar cells: An overview from metal particle structure to device design. Surf. Interfaces. 25, 101287 (2021)

    Article  CAS  Google Scholar 

  • Lie, S., Bruno, A., Wong, L.H., Etgar, L.: Semitransparent perovskite solar cells with > 13% efficiency and 27% transperancy using plasmonic au nanorods. ACS Appl. Mater. Interfaces. 14(9), 11339–11349 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 501(7467), 395–398 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Liu, J., Yao, M., Shen, L.: Third generation photovoltaic cells based on photonic crystals. J. Mater. Chem. C. 7(11), 3121–3145 (2019a)

    Article  CAS  Google Scholar 

  • Liu, W., Ma, H., Walsh, A.: Advance in photonic crystal solar cells. Renew. Sustain. Energy Rev. 116, 109436 (2019b). https://doi.org/10.1016/j.rser.2019.109436

    Article  CAS  Google Scholar 

  • Liu, Z., et al.: Improving efficiency and stability of colorful perovskite solar cells with two-dimensional photonic crystals. Nanoscale. 12, 8425–8431 (2020). https://doi.org/10.1039/d0nr00459f

    Article  CAS  PubMed  Google Scholar 

  • Lobet, M., et al.: Efficiency enhancement of perovskite solar cells based on opal-like photonic crystals. Opt. Express. 27(22), 32308–32322 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lobet, M., et al.: Opal-Like photonic structuring of perovskite solar cells using a genetic algorithm approach. Appl. Sci. 10(5), 1783 (2020)

    Article  CAS  Google Scholar 

  • Madanu, T.L., Mouchet, S.R., Deparis, O., Liu, J., Li, Y., Su, B.-L.: Tuning and transferring slow photons from TiO2 photonic crystals to BiVO4 nanoparticles for unprecedented visible light photocatalysis. J. Colloid Interface Sci. 634, 290–299 (2023)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mangrulkar, M., Stevenson, K.J.: The progress of additive engineering for CH3NH3PbI3 photo-active layer in the context of perovskite solar cells. Crystals. 11(7), 814 (2021)

    Article  CAS  Google Scholar 

  • Osterwald, C.R., McMahon, T.J.: History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature review. Prog. Photovoltaics Res. Appl. 17(1), 11–33 (2009)

    Article  Google Scholar 

  • Pandey, M., et al.: Deposition of Reduced Graphene Oxide Thin Film by Spray Pyrolysis Method for Perovskite Solar Cell, ar**v Prepr. ar**v2212.01066, (2022)

  • Qiu, L., He, S., Ono, L.K., Qi, Y.: Progress of surface science studies on ABX3-based metal halide perovskite solar cells. Adv. Energy Mater. 10(13), 1902726 (2020)

    Article  CAS  Google Scholar 

  • Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Sci. (80-). 292(5514), 77–79 (2001)

    Article  ADS  CAS  Google Scholar 

  • Sun, X., et al.: Fabrication of opaque aluminum electrode-based perovskite solar cells enabled by the interface optimization. Org. Electron. 104, 106475 (2022)

    Article  CAS  Google Scholar 

  • Tabrizi, A.A., Saghaei, H., Mehranpour, M.A., Jahangiri, M.: Enhancement of absorption and effectiveness of a perovskite thin-film solar cell embedded with gold nanospheres. Plasmonics. 16, 747–760 (2021)

    Article  CAS  Google Scholar 

  • Tang, Y., et al.: FAPbI3 Perovskite Solar cells: From Film morphology regulation to device optimization. Sol. RRL. 6(6), 2200120 (2022)

    Article  MathSciNet  CAS  Google Scholar 

  • Tao, M.: Physics of solar cells. Wiley-Vch. no. 9781447156420 (2014). https://doi.org/10.1007/978-1-4471-5643-7_3

  • Wang, Z.-S., Kawauchi, H., Kashima, T., Arakawa, H.: Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord. Chem. Rev. 248, 13–14 (2004)

    Article  Google Scholar 

  • Wang, Y., Wan, J., Ding, J., Hu, J., Wang, D.: A rutile TiO2 electron transport layer for the enhancement of charge collection for efficient perovskite solar cells. Angew. Chemie Int. Ed. 58(28), 9414–9418 (2019)

    Article  CAS  Google Scholar 

  • Wang, Z.-W., Wan, B.-F., Wang, Q.-Y., Zhang, H.-F.: Study on the PBGs of a two-dimensional photonic crystal with multilayer rings composite structure and its slow light in W1 waveguide. Phys. Scr. 96(12), 125501 (2021)

    Article  ADS  Google Scholar 

  • **e, K., Guo, M., Huang, H.: Photonic crystals for sensitized solar cells: Fabrication, properties, and applications. J. Mater. Chem. C. 3(41), 10665–10686 (2015)

    Article  CAS  Google Scholar 

  • Yoo, J.J., et al.: Efficient perovskite solar cells via improved carrier management. Nature. 590(7847), 587–593 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang, X., et al.: Amorphous TiO2 film with fiber like structure: An ideal candidate for ETL of perovskite solar cells. Mater. Lett. 324, 132684 (2022)

    Article  CAS  Google Scholar 

  • Zhou, H., et al.: Interface engineering of highly efficient perovskite solar cells. Sci. (80-). 345(6196), 542–546 (2014)

    Article  ADS  CAS  Google Scholar 

  • Zou, J., Liu, M., Tan, S., Bi, Z., Wan, Y., Guo, X.: Rational design and simulation of two-dimensional perovskite photonic crystal absorption layers enabling improved light absorption efficiency for solar cells. Energies. 14(9), 2460 (2021). https://doi.org/10.3390/en14092460

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been done in Nano-photonics and Optoelectronics Research Laboratory (NORLab).

Funding

This work was supported by the Shahid Rajaee Teacher Training University under grant number 4976.

Author information

Authors and Affiliations

Authors

Contributions

N. F.: designed and performed simulations and analyzed data, M. S. and F. P.: reviewed and edited, S. O.: supervised, verified, edited, and prepared the final draft of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saeed Olyaee.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatehi, N., Olyaee, S., Seifouri, M. et al. Design of a high-efficiency perovskite solar cell based on photonic crystal in the absorption layer. Opt Quant Electron 56, 386 (2024). https://doi.org/10.1007/s11082-023-06116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-06116-6

Keywords

Navigation