Log in

Design of a high-sensitivity extended mid-wave infrared InAsSb-based nBn photodetector by utilizing barrier band engineering technique: an outstanding device for biosensing applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the InAsSb-based barrier infrared photodetector, the unwanted valence band offset penalizes minority carrier transport in these devices, increasing dark current density. We report a new back-side illuminated InAsSb-based nBn photodetector using an InAsSb (xSb = 0.19) absorber layer and InAlSb/AlAsSb core/shell compound barrier with a 50% cut-off wavelength of more than 5 µm at room temperature for the first time. The barrier band engineering is performed by employing the core/shell heterostructure compound barrier can reduce the valence band offset and bring it to near zero. For this reason, in the proposed device, by suppressing the dark current components, especially the Shockley–Read–Hall (SRH) mechanism, the dark current density is significantly reduced, and the optical response of the device is also dramatically increased. At 300 K, the dark current density of this photodetector reaches 8.124 × 10−5 A/cm2 at  − 0.5 V. Furthermore, we evaluate the optical sensitivity of the device for responding to the detection of Hela cancer cells at the wavelengths of 3.6 µm, 4.1 µm, and 5 µm, which are the essential wavelengths for the diagnosis of these cancer cells. Based on the simulation results, the spectral response peak occurs at a wavelength of 5 µm. The figure of merits, such as current responsivity (Rλ), external quantum efficiency (EQE), specific detectivity (D*), noise equivalent power (NEP), and linear optical dynamic range (LODR), are 2.29 A/W, 57%, 3.386 × 1010 cmHz1/2/W, 8.858 × 10−13 W/Hz1/2, and 73.76 dB, respectively at 5 µm under  − 0.5 V bias. In fact, the simulation results confirm that the proposed photodetector can be a device with high potential for modern infrared systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data and materials availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Almeida, A.M., Queiroz, J.A., Sousa, F., Sousa, Â.: Cervical cancer and HPV infection: ongoing therapeutic research to counteract the action of E6 and E7 oncoproteins. Drug Discov. Today 24(10), 2044–2057 (2019)

    Google Scholar 

  • Chen, D., Li, D., **ao, T., Shi, J., He, Y., Gong, X., Yang, S., Yue, B., Zhao, J., Yang, W.: Bulk InAsSb-based upside-down pCBn photodetectors with greater than 5 µ m cut-off wavelength. AIP Adv. 12(5), 055327 (2022)

    ADS  Google Scholar 

  • Craig, A., Marshall, A., Tian, Z.-B., Krishna, S., Krier, A.: Mid-infrared InAs0. 79Sb0. 21-based nBn photodetectors with Al0. 9Ga0. 2As0. 1Sb0. 9 barrier layers, and comparisons with InAs0. 87Sb0. 13 pin diodes, both grown on GaAs using interfacial misfit arrays. Appl. Phys. Lett. 103(25), 253502 (2013)

    ADS  Google Scholar 

  • Cristiano, L.: Use of infrared-based devices in aesthetic medicine and for beauty and wellness treatments. Infrared Phys. Technol. 102, 102991 (2019)

    Google Scholar 

  • D’souza, A., Robinson, E., Ionescu, A., Okerlund, D., De Lyon, T., Sharifi, H., Roebuck, M., Yap, D., Rajavel, R., Dhar, N.: Electrooptical characterization of MWIR InAsSb detectors. J. Electron. Mater. 41(10), 2671–2678 (2012)

    ADS  Google Scholar 

  • Deng, G., Yang, W., Gong, X., Zhang, Y.: High-performance uncooled InAsSb-based pCBn mid-infrared photodetectors. Infrared Phys. Technol. 105, 103260 (2020a)

    Google Scholar 

  • Deng, G., Yang, W., Zhao, P., Zhang, Y.: High operating temperature InAsSb-based mid-infrared focal plane array with a band-aligned compound barrier. Appl. Phys. Lett. 116(3), 031104 (2020b)

    ADS  Google Scholar 

  • El_Tokhy, M.S., Mahmoud I.: Detectivity analysis of infrared photodetector devices under nonuniform distribution of quantum well and wire. Optik 227, 166113 (2021)

  • Grygoryev, K., Komolibus, K., Gunther, J., Nunan, G., Manley, K., Andersson-Engels, S., Burke, R.: Cranial perforation using an optically-enhanced surgical drill. IEEE Trans. Biomed. Eng. 67(12), 3474–3482 (2020)

    Google Scholar 

  • Hargate, G.: A randomised double-blind study comparing the effect of 1072-nm light against placebo for the treatment of herpes labialis. Clin. Exp. Dermatol.: Clin. Dermatol. 31(5), 638–641 (2006)

    Google Scholar 

  • Hasegawa, R., Yoshikawa, A., Morishita, T., Moriyasu, Y., Nagase, K., Kuze, N.: Room temperature operating InAsSb-based photovoltaic infrared sensors grown by metalorganic vapor phase epitaxy. J. Cryst. Growth 464, 211–214 (2017)

    ADS  Google Scholar 

  • Huang, J., **e, Z., Chen, Y., Bowers, J.E., Chen, B.: High speed mid-wave infrared uni-traveling carrier photodetector. IEEE J. Quantum Electron. 56(4), 1–7 (2020)

    Google Scholar 

  • Huang, J., Shen, Z., Wang, Z., Zhou, Z., Wang, Z., Peng, B., Liu, W., Chen, Y., Chen, B.: High-speed mid-wave infrared uni-traveling carrier photodetector based on inas/inassb type-ii superlattice. IEEE Electron Device Lett. 43(5), 745–748 (2022)

    ADS  Google Scholar 

  • Hull, R., Mbele, M., Makhafola, T., Hicks, C., Wang, S.M., Reis, R.M., Mehrotra, R., Mkhize-Kwitshana, Z., Kibiki, G., Bates, D.O.: Cervical cancer in low and middle-income countries. Oncol. Lett. 20(3), 2058–2074 (2020)

    Google Scholar 

  • Johnstone, D.M., Moro, C., Stone, J., Benabid, A.-L., Mitrofanis, J.: Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer’s and Parkinson’s disease. Front. Neurosci. 9, 1–15 (2016)

    Google Scholar 

  • Klipstein, P., Klin, O., Grossman, S., Snapi, N., Lukomsky, I., Aronov, D., Yassen, M., Glozman, A., Fishman, T., Berkowicz, E.: XBn barrier photodetectors based on InAsSb with high operating temperatures. Opt. Eng. 50(6), 061002 (2011)

    ADS  Google Scholar 

  • Klipstein, P., Klin O., Grossman S., Snapi N., Yaakobovitz B., Brumer M., Lukomsky I., Aronov D., Yassen M., Yofis B.: MWIR InAsSb XBn detectors for high operating temperatures. In: Infrared Technology and Applications XXXVI, SPIE, (2010)

  • Lagraa, I., Soudini, B., Abid, H., Taleb, S.: Study and optimization of structure InAs/InGaAs quantum dot in-a-well long-wave infrared photodetector. Optik 251, 168494 (2022)

    ADS  Google Scholar 

  • Lee, S.Y.C., Seong, I.-W., Kim, J.-S., Cheon, K.-A., Gu, S.H., Kim, H.H., Park, K.H.: Enhancement of cutaneous immune response to bacterial infection after low-level light therapy with 1072 nm infrared light: a preliminary study. J. Photochem. Photobiol., B 105(3), 175–182 (2011)

    Google Scholar 

  • Levinshtein, M.: Handbook series on semiconductor parameters. World Scientific 2, 1–205 (1997)

    Google Scholar 

  • Lin, Y., Zou, J., Wang, W., Liu, X., Gao, J., Lu, Z.: High-performance self-powered ultraviolet photodetector based on PEDOT: PSS/CuO/ZnO nanorod array sandwich structure. Appl. Surf. Sci. 599, 153956 (2022)

    Google Scholar 

  • Lotfi, H., Li, L., Lei, L., Ye, H., Shazzad Rassel, S., Jiang, Y., Yang, R.Q., Mishima, T.D., Santos, M.B., Gupta, J.A.: High-frequency operation of a mid-infrared interband cascade system at room temperature. Appl. Phys. Lett. 108(20), 201101 (2016)

    ADS  Google Scholar 

  • Maimon, S., Wicks, G.: n B n detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89(15), 151109 (2006)

    ADS  Google Scholar 

  • Martyniuk, P., Rogalski, A.: Performance limits of the mid-wave InAsSb/AlAsSb nBn HOT infrared detector. Opt. Quant. Electron. 46(4), 581–591 (2014)

    Google Scholar 

  • Momenimovahed, Z., Salehiniya, H.: Cervical cancer in Iran: integrative insights of epidemiological analysis. Biomedicine 8(3), 37–44 (2018)

    Google Scholar 

  • Rodriguez, E., Mottaghizadeh, A., Gacemi, D., Palaferri, D., Asghari, Z., Jeannin, M., Vasanelli, A., Bigioli, A., Todorov, Y., Beck, M.: Room-temperature, wide-band, quantum well infrared photodetector for microwave optical links at 4.9 μm wavelength. ACS Photonics 5(9), 3689–3694 (2018)

    Google Scholar 

  • Rogalski, A., Orman, Z.: Band-to-band recombination in InAs1− xSbx. Infrared Phys. 25(3), 551–560 (1985)

    ADS  Google Scholar 

  • Rogalski, A., Martyniuk, P., Kopytko, M., Madejczyk, P., Krishna, S.: InAsSb-Based Infrared Photodetectors: thirty years later on. Sensors 20(24), 7047 (2020)

    ADS  Google Scholar 

  • Shaveisi, M., Aliparast, P.: Design and modeling of high-performance mid-wave infrared InAsSb-based nBn photodetector using barrier band engineering approaches. Frontiers of Optoelectronics 16(1), 5 (2023a)

    Google Scholar 

  • Shaveisi, M., Aliparast, P.: Mid-wave infrared optical receiver based on an InAsSb-nBn photodetector using the barrier do** engineering technique for low-power satellite optical wireless communication. Appl. Opt. 62(10), 2675–2683 (2023b)

    ADS  Google Scholar 

  • Shui, S., Wang, X., Chiang, J.Y., Zheng, L.: RETRACTED: Far-infrared therapy for cardiovascular, autoimmune, and other chronic health problems: a systematic review. Exp. Biol. Med. 240(10), 1257–1265 (2015)

    Google Scholar 

  • Shushama, K.N., Rana, M.M., Inum, R., Hossain, M.B.: Sensitivity enhancement of graphene coated surface plasmon resonance biosensor. Opt. Quant. Electron. 49, 1–13 (2017)

    Google Scholar 

  • Soibel, A., Hill, C.J., Keo, S.A., Hoglund, L., Rosenberg, R., Kowalczyk, R., Khoshakhlagh, A., Fisher, A., Ting, D.Z.-Y., Gunapala, S.D.: Room temperature performance of mid-wavelength infrared InAsSb nBn detectors. Appl. Phys. Lett. 105(2), 023512 (2014)

    ADS  Google Scholar 

  • Sthalekar, C.C., Miao, Y., Koomson, V.J.: Optical characterization of tissue phantoms using a silicon integrated fdNIRS system on chip. IEEE Trans. Biomed. Circuits Syst. 11(2), 279–286 (2016)

    Google Scholar 

  • Ting, D.Z., Soibel, A., Khoshakhlagh, A., Gunapala, S.D.: Theoretical analysis of nBn infrared photodetectors. Opt. Eng. 56(9), 091606 (2017)

    ADS  Google Scholar 

  • Tsai, S.-R., Hamblin, M.R.: Biological effects and medical applications of infrared radiation. J. Photochem. Photobiol., B 170, 197–207 (2017)

    Google Scholar 

  • Tsai, S.-R., Sheu, B.-C., Huang, P.-S., Lee, S.-C.: The effects of narrow-band middle infrared radiation in enhancing the antitumor activity of paclitaxel. Electromagn. Biol. Med. 35(2), 106–114 (2016)

    Google Scholar 

  • Vatansever, F., Hamblin, M.R.: Far infrared radiation (FIR): its biological effects and medical applications. Photonics Lasers Med. 1(4), 255–266 (2012)

    Google Scholar 

  • Verma, A., Prakash, A., Tripathi, R.: Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria. Opt. Quant. Electron. 47(5), 1197–1205 (2015)

    Google Scholar 

  • VurgaftmanMeyer, I.J.Á., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001)

    ADS  Google Scholar 

  • Weiss, E., Klin, O., Grossmann, S., Snapi, N., Lukomsky, I., Aronov, D., Yassen, M., Berkowicz, E., Glozman, A., Klipstein, P.: InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs. J. Cryst. Growth 339(1), 31–35 (2012)

    ADS  Google Scholar 

  • Wu, D., Zhang, Y., Razeghi, M.: Room temperature operation of InxGa1− xSb/InAs type-II quantum well infrared photodetectors grown by MOCVD. Appl. Phys. Lett. 112(11), 111103 (2018)

    ADS  Google Scholar 

  • Wu, D., Li, J., Dehzangi, A., Razeghi, M.: Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice. AIP Adv. 10(2), 025018 (2020)

    ADS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other supports were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. All authors performed data collection, simulation, and result analysis. Maryam Shaveisi wrote the first draft of the manuscript, and all authors commented on the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maryam Shaveisi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the study reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaveisi, M., Aliparast, P. Design of a high-sensitivity extended mid-wave infrared InAsSb-based nBn photodetector by utilizing barrier band engineering technique: an outstanding device for biosensing applications. Opt Quant Electron 55, 848 (2023). https://doi.org/10.1007/s11082-023-05013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05013-2

Keywords

Navigation