Log in

Numerical investigation of all optical SR flip-flop using plasmonic metal–insulator-metal (MIM) waveguides

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The metal–insulator-metal (MIM) plasmonic waveguides plays an important role in confining the surface plasmons to deep subwavelength scale. In this work, S-shaped and linear MIM waveguides have been used to model the nonlinear Mach–Zehnder interferometer (MZI), that is further used to cascade the circuit of SR flip-flop. The MEH-PPV [poly(2-methoxy-5-(28-ethylhexyloxy)-PPV)] is used as nonlinear material in one of the linear arm of MZI, to introduce the Kerr effect. The Kerr effect is helpful to initiate the phenomenon of constructive and destructive interference in MZI. The occurrence of constructive and destructive interference is helpful to switch the optical signal across its output port. The analysis of proposed device is carried out at the operating wavelength of 1.55 µm with perfect matched layer (PML) as boundary condition for all the interfaces. The numerical investigation of SR flip-flop is done by using finite difference time domain (FDTD) method. The obtained results of SR flip flop are encouraging to design all other optical flip flop circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alam, M.Z., Caspers, J.N., Aitchison, J.S., Mojahedi, M.: Compact low loss and broadband hybrid plasmonic directional coupler. Opt. Express 21, 16029–16034 (2013)

    Article  ADS  Google Scholar 

  • Ancik, J.T., Bhattacharya, P., Sabarmathan, J., Yu, P.C.: Fluid detection with photonic crystal-based multichannel waveguides. Appl. Phys. Lett. 82, 1143–1145 (2003)

    Article  ADS  Google Scholar 

  • Bader, M.A., Marowsky, G., Bahtiar, A., Koynov, K., Bubeck, C., Lmann, H., Hörhold, H.H., Pereira, S.: Poly(pphenylenevinylene) derivatives: new promising materials for nonlinear all-optical waveguide switching. J Opt Soc Am B 19, 2250–2262 (2002)

    Article  ADS  Google Scholar 

  • Bharti, G.K., Rakshit, J.K.: Design of all-optical JK, SR and T flip-flops using micro-ring resonator-based optical switch. Photon. Netw. Commun. 35, 381–391 (2018)

    Article  Google Scholar 

  • Caulfield, H.J., Shamir, J.: Wave-particle-duality processors: characteristics, requirements, and applications. J. Opt. Soc. Am. A 7, 1314–1323 (1990)

    Article  ADS  Google Scholar 

  • Davoyan, A.R., Shadrivov, I.V., Kivshar, Y.S.: Symmetry breaking in plasmonic waveguides with metal nonlinearities. Opt. Lett. 36, 930–932 (2011)

    Article  ADS  Google Scholar 

  • Dionne, J.A., et al.: Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006)

    Article  ADS  Google Scholar 

  • Kong, X.T., Yan, W.G., Li, Z.B., Tian, J.G.: Optical properties of metal-multi-insulator–metal plasmonic waveguides. Opt. Express 20, 12133–12146 (2012)

    Article  ADS  Google Scholar 

  • Kong, X.-T., Li, Z.B., Tian, J.-G.: Mode converter in metal insulator–metal plasmonic waveguide designed by transformation optics. Opt. Express 21, 9437–9446 (2013)

    Article  ADS  Google Scholar 

  • Krasavin, A.V., Zayats, A.V.: Guiding light at the nanoscale: numerical optimization of ultra-sub-wavelength metallic wire plasmonic waveguides. Opt. Lett. 36, 3127–3129 (2011)

    Article  ADS  Google Scholar 

  • Kumar, S., Singh, L., Swarnakar, S.: Design of one-bit magnitude comparator using nonlinear plasmonic waveguide. Plasmonics 12, 369–375 (2016)

    Article  Google Scholar 

  • Kumar, S., Singh, L.: Proposed new approach to design all optical and gate using plasmonic based Mach-Zehnder interferometer for high speed communication. Proc SPIE 9884, Nanophotonics 6, 98842 (2016). https://doi.org/10.1117/12.2227069

  • Liu, L., Han, Z., He, S.: Novel surface plasmon waveguide for high integration. Opt. Express 13, 6645–6650 (2005)

    Article  ADS  Google Scholar 

  • Moon, S., Kim, Y., Oh, Y., Lee, H., Kim, H.C., Leea, K., Kim, D.: Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization. Biosens. Bioelectron. 32, 141–147 (2012)

    Article  Google Scholar 

  • Ozbey, E.: Plasmonics merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)

    Article  ADS  Google Scholar 

  • Pal, A., Kumar, S., Sharma, S.: Design of optical SR latch and flip-flop using electro-optic effect inside lithium–niobate-based mach-zehnder interferometers. J. Optic. Commun. 55, 115101 (2017)

    Google Scholar 

  • Pannipitiya, A., Rukhlenko, I.D., Premaratne, M., Hattori, H.T., Agrawal, G.P.: Improved transmission model for metal–dielectric–metal plasmonic waveguides with stub structure. Opt. Express 18, 6191–6204 (2010)

    Article  ADS  Google Scholar 

  • Pile, D.F.P., Ogawa, T., Gramotnev, D.K., Matsuzaki, Y., Vernon, K.C., Yamaguchi, K., Okamoto Haraguchi, T.M., Fukui, M.: Two dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87, 261114 (2005)

    Article  ADS  Google Scholar 

  • Razak, H.A., Sulaiman, N.H., Haroon, H., Zain, A.S.M.: A fiber optic sensor based on Mach-Zehnder interferometer structure for food composition detection. Microw. Opt. Technol. Lett. 60, 920–925 (2018)

    Article  Google Scholar 

  • Rukhlenko, I.D., Pannipitiya, A., Premaratne, M.: Dispersion relation for surface plasmon polaritons in metal/nonlinear-dielectric/metal slot waveguides. Opt. Lett. 36, 3374–3376 (2011)

    Article  ADS  Google Scholar 

  • Singh, L., Pareek, P., Kumar, G.M., Revathi, D.: A Microscale numerical analysis of ex-or and ex-nor logic gates by using single plasmonic MZI. Plasmonics 16, 1127–1136 (2021a)

    Article  Google Scholar 

  • Singh, L., Zhu, G., Kumar, G.M., Revathi, D., Pareek, P.: Numerical simulation of all-optical logic functions at micrometer scale by using plasmonic metal-insulator-metal (MIM) waveguides. Optic. Laser Technol. 135, 106697 (2021b)

    Article  Google Scholar 

  • Takahara, J., et al.: Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997)

    Article  ADS  Google Scholar 

  • Veronis, G., Fan, S.: Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt. Lett. 30, 3359–3361 (2005)

    Article  ADS  Google Scholar 

  • Veronis, G., Kocabas, S.E., Miller, D.A.B., Fan, S.: Modeling of plasmonic waveguide components and networks. J Comput. Theor. Nanosci. 6, 1808–1826 (2009)

    Article  Google Scholar 

  • Wang, L., Wang, Y., Wang, S., Geng, Y., Zhang, M.:All-optical flip-flop based on SOA and MZI switch. In: 2016 Progress in Electromagnetic Research Symposium (PIERS), pp. 1457–1461 (2016)

  • Wu, Y.D., Shih, T.T.: New all optical logic gates based on the local nonlinear Mach-Zehnder interferometer. Opt. Express 16, 248–257 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr. N. Venkatram, Pro Vice Chancellor, KL University and Dr. S. P. Gupta, Vice Chancellor, University of Engineering and Technology Roorkee (UETR) for their regular support and motivation during the work.

Funding

Not available.

Author information

Authors and Affiliations

Authors

Contributions

LS develop the idea and drafted the manuscript. NKA revised the draft file of manuscript. KKG and PP made and modified the figures and layout designs. CS finalized the draft file of manuscript.

Corresponding author

Correspondence to Lokendra Singh.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L., Agrawal, N., Gola, K.K. et al. Numerical investigation of all optical SR flip-flop using plasmonic metal–insulator-metal (MIM) waveguides. Opt Quant Electron 54, 381 (2022). https://doi.org/10.1007/s11082-022-03666-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03666-z

Keywords

Navigation