Log in

Hollow-core photonic crystal fibres for delivery and compression of ultrashort optical pulses

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We describe the use of tapered hollow-core photonic crystal fibres for delivery and compression of ultrashort optical pulses. We demonstrate delivery of transform-limited pulses with less than 100 fs pulse length and above 50 nJ energy through 8 m of fibre, in a single transverse mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal G.P. (2001). Nonlinear fiber optics. Academic Press, San Diego

    Google Scholar 

  • Allan, D.C., Borrelli, N.F., Gallagher, M.T., Müller, D., Smith, C.M., Venkataraman, N., West, J.A., Zhang, P., Koch, K.W.: Surface modes and loss in air-core photonic band-gap fibers. In: Adibi, A., Scherer, A., Lin, S.Y. (eds.) Photonic Crystal Materials and Devices, Proceedings of SPIE, vol. 5000, pp. 161–174. (2003)

  • Amezcua-Correa R., Broderick N.G., Petrovich M.N., Poletti F. and Richardson D.J. (2006). Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers. Opt. Express 14(17): 7974–7985

    Article  ADS  Google Scholar 

  • Benabid F., Knight J.C., Antonopoulos G. and Russell P.S.J. (2002). Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298: 399–402

    Article  ADS  Google Scholar 

  • Chernikov S.V. and Mamyshev P.V. (1991). Femtosecond soliton propagation in fibers with slowly decreasing dispersion. J. Opt. Soc. Am. B. 8: 1633–1641

    ADS  Google Scholar 

  • Chernikov S.V., Dianov E.M., Richardson D.J. and Payne D.N. (1993). Soliton pulse-compression in dispersion-decreasing fiber. Opt. Lett. 18: 476–478

    Article  ADS  Google Scholar 

  • Cregan R.F., Mangan B.J., Knight J.C., Birks T.A., Russell P.S.J., Allen D. and Roberts P.J. (1999). Single-mode photonic bandgap guidance of light in air. Science 285: 1537–1539

    Article  Google Scholar 

  • Fermann, M., Tünnerman, A. (eds.): Special issue on fiber lasers. J. Opt. Soc. Am. B 24, 1660–1823 x

  • Genty G., Coen S. and Dudley J.M. (2007). Fiber supercontinuum sources. J. Opt. Soc. Am. B 24(8): 1771–1785

    Article  ADS  Google Scholar 

  • Gérôme F., Cook K., George A.K., Wadsworth W.J. and Knight J.C. (2007). Delivery of sub-100 fs pulses through 8 m of hollow-core fiber using soliton compression. Opt. Express 15: 7126–7131

    Article  ADS  Google Scholar 

  • Humbert G., Knight J.C., Bouwmans G., Russell P., Williams D., Roberts P. and Mangan B.J. (2002). Hollow core photonic crystal fibers for beam delivery. Opt. Express 12(8): 1477–1484

    Article  ADS  Google Scholar 

  • Knight J.C. (2003). Photonic crystal fibres. Nature 424: 847–851

    Article  ADS  Google Scholar 

  • Luan F., Knight J.C., Russell P.S.J., Campbell S., **ao D., Reid D., Mangan B., Williams D. and Roberts P. (2004). Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers. Opt. Express 12(5): 835–840

    Article  ADS  Google Scholar 

  • Mangan, B.J., Farr, L., Langford, A., Roberts, P.J., Williams, D.P., Couny, F., Lawman, M., Mason, M., Coupland, S., Flea, R., Sabert, H., Birks, T.A., Knight, J.C., Russell, P.S.J.: Low loss (1.7 dB/km) hollow core photonic bandgap fiber. Postdeadline paper PDP24, OFC’04, Los Angeles (2004)

  • Ouzounov D.G., Ahmad F.R., Müller D., Venkataraman N., Gallagher M.T., Thomas M.G., Silcox J., Koch K.W. and Gaeta A.L. (2003). Generation of Megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301: 1702–1704

    Article  ADS  Google Scholar 

  • Ouzounov D., Hensley C., Gaeta A., Venkateraman N., Gallagher M. and Koch K. (2005). Soliton pulse compression in photonic band-gap fibers. Opt. Express 13(16): 6153–6159

    Article  ADS  Google Scholar 

  • Roberts P., Williams D., Mangan B., Sabert H., Couny F., Wadsworth W., Birks T., Knight J. and Russell P. (2005). Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround. Opt. Express 13(20): 8277–8285

    Article  ADS  Google Scholar 

  • Russell P.S.J. (2003). Photonic crystal fibres. Science 299: 358–362

    Article  ADS  Google Scholar 

  • Shank C.V., Fork R.L., Yen R., Stolen R.H. and Tomlinson W.J. (1982). Compression of femtosecond optical pulses. Appl. Phys. Lett. 40: 761–763

    Article  ADS  Google Scholar 

  • Smith K. and Mollenauer L.F. (1989). Experimental-observation of adiabatic-compression and expansion of soliton pulses over long fiber paths. Opt. Lett. 14: 751–753

    ADS  Google Scholar 

  • Smith C.M., Venkataraman N., Gallagher M.T., Müller D., West J.A., Borrelli N.F., Allan D.C. and Koch K.W. (2003). Low-loss hollow-core silica/air photonic bandgap fibre. Nature 424: 657–659

    Article  ADS  Google Scholar 

  • Travers, J.C., Stone, J.M., Rulkov, A.B., Cumberland, B.A., George, A.K., Popov, S.V., Knight, J.C., Taylor, J.R.: Optical pulse compression in dispersion decreasing photonic crystal fiber. Submitted to Optics Express (2007)

  • Tse M.L.V., Horak P., Price J.H.V., Poletti F., He F. and Richardson D.J. (2006). Pulse compression at 1.06 μm in dispersion-decreasing holey fibers. Opt. Lett. 31: 3504–3506

    Article  ADS  Google Scholar 

  • Udem T.h., Holzwarth R. and Haensch T.W. (2002). Opt. Freq. Metrol. Nature 416: 233–237

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Knight.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knight, J.C., Gérôme, F. & Wadsworth, W.J. Hollow-core photonic crystal fibres for delivery and compression of ultrashort optical pulses. Opt Quant Electron 39, 1047–1056 (2007). https://doi.org/10.1007/s11082-007-9128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-007-9128-y

Keywords

Navigation