Log in

Covariance prediction via convex optimization

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We consider the problem of predicting the covariance of a zero mean Gaussian vector, based on another feature vector. We describe a covariance predictor that has the form of a generalized linear model, i.e., an affine function of the features followed by an inverse link function that maps vectors to symmetric positive definite matrices. The log-likelihood is a concave function of the predictor parameters, so fitting the predictor involves convex optimization. Such predictors can be combined with others, or recursively applied to improve performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Robert Tibshirani, personal communication.

References

  • Anderson T (1973) Asymptotically efficient estimation of covariance matrices with linear structure. Ann Stat 1(1):135–141

    Article  MathSciNet  MATH  Google Scholar 

  • Anscombe J (1961) Examination of residuals. In: Proceedings of the Berkeley symposium on mathematical statistics and probability

  • Asuncion A, Newman D (2007) UCI machine learning repository

  • Bilmes J (1998) A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. Int Comput Sci Inst 4(510):126

    Google Scholar 

  • Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econom 31(3):307–327

    Article  MathSciNet  MATH  Google Scholar 

  • Bollerslev T (1990) Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. Rev Econom Stat, pp 498–505

  • Bollerslev T, Engle R, Wooldridge J (1988) A capital asset pricing model with time-varying covariances. J Polit Econ 96(1):116–131

    Article  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Chiu T, Leonard T, Tsui K-W (1996) The matrix-logarithmic covariance model. J Am Stat Assoc 91(433):198–210

    Article  MathSciNet  MATH  Google Scholar 

  • Cleveland W, Devlin S (1988) Locally-weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83(403):596–610

    Article  MATH  Google Scholar 

  • Cook D, Weisberg S (1983) Diagnostics for heteroscedasticity in regression. Biometrika 70(1):1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Davidian M, Carroll R (1987) Variance function estimation. J Am Stat Assoc 82(400):1079–1091

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster A (1972) Covariance selection. Biometrics, pp 157–175

  • Dorta G, Vicente S, Agapito L, Campbell N, Simpson I (2018) Structured uncertainty prediction networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5477–5485

  • Engle R (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econom J Econom Soc, pp 987–1007

  • Engle R, Kroner K (1995) Multivariate simultaneous generalized ARCH. Econom Theory, pp 122–150

  • Fama E, French K (1992) The cross-section of expected stock returns. J Finance 47(2):427–465

    Article  Google Scholar 

  • Francq C, Zakoian J-M (2019) GARCH models: structure, statistical inference and financial applications. John Wiley and Sons, New Jersey

    Book  MATH  Google Scholar 

  • Freund Y, Schapire R (1996) Experiments with a new boosting algorithm. In: icml, vol 96, pp 148–156. Citeseer

  • Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3):432–441

    Article  MATH  Google Scholar 

  • Grinold R, Kahn R (2000) Active portfolio management. McGraw Hill, New York

    Google Scholar 

  • Harper D (2009) Exploring the exponentially weighted moving average. Investopedia

  • Hawkins D, Maboudou-Tchao E (2008) Multivariate exponentially weighted moving covariance matrix. Technometrics 50(2):155–166

    Article  MathSciNet  Google Scholar 

  • Heiden M (2015) Pitfalls of the Cholesky decomposition for forecasting multivariate volatility. Available at SSRN 2686482

  • Huang J, Liu N, Pourahmadi M, Liu L (2006) Covariance matrix selection and estimation via penalised normal likelihood. Biometrika 93(1):85–98

    Article  MathSciNet  MATH  Google Scholar 

  • Liu D, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math Program 45(1–3):503–528

    Article  MathSciNet  MATH  Google Scholar 

  • Longerstaey J, Spencer M (1996) Riskmetrics – Technical Document. JP Morgan and Reuters

  • Meier L, Van De Geer S, Bühlmann P (2008) The group lasso for logistic regression. J R Stat Soc Ser B (Stat Methodol) 70(1):53–71

    Article  MathSciNet  MATH  Google Scholar 

  • Menchero J, Orr DJ, Wang J (2011) The Barra US equity model (USE4), methodology notes. MSCI Barra

  • Jianxin P (2021) jmcm: Joint mean-covariance models using ‘Armadillo’ and S4. R package version 0.2.4

  • Posthuma P (2019) lmvar: Linear Regression with Non-Constant Variances. R package version 1.5.2

  • Pourahmadi M (1999) Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation. Biometrika 86(3):677–690

    Article  MathSciNet  MATH  Google Scholar 

  • Pourahmadi M (2000) Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix. Biometrika 87(2):425–435

    Article  MathSciNet  MATH  Google Scholar 

  • Pourahmadi M (2011) Covariance estimation: The GLM and regularization perspectives. Stat Sci, pp 369–387

  • Recht B, Fazel M, Parrilo P (2010) Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev 52(3):471–501

    Article  MathSciNet  MATH  Google Scholar 

  • Redmond M, Baveja A (2002) A data-driven software tool for enabling cooperative information sharing among police departments. Eur J Oper Res 141:660–678

    Article  MATH  Google Scholar 

  • Rothman A, Levina E, Zhu J (2010) A new approach to Cholesky-based covariance regularization in high dimensions. Biometrika 97(3):539–550

    Article  MathSciNet  MATH  Google Scholar 

  • Rubin D, Thayer D (1982) EM algorithms for ML factor analysis. Psychometrika 47(1):69–76

    Article  MathSciNet  MATH  Google Scholar 

  • Liangjun S, Wang X (2017) On time-varying factor models: estimation and testing. J Econom 198(1):84–101

    Article  MathSciNet  MATH  Google Scholar 

  • Tuck J, Barratt S, Boyd S (2021) A distributed method for fitting Laplacian regularized stratified models. J Mach Learn Res 22:60–1

    MathSciNet  MATH  Google Scholar 

  • Tuck J, Barratt S, Boyd S (2021) Portfolio construction using stratified models. ar**v preprint ar**v:2101.04113

  • Tuck J, Boyd S (2020) Fitting Laplacian regularized stratified gaussian models. ar**v preprint ar**v:2005.01752

  • Bureau of the Census US Department of Commerce. Census of Population and Housing 1990 United States: Summary tape file 1a and 3a (computer files)

  • Bureau of Justice Statistics US Department of Justice (1992) Law enforcement management and administrative statistics (computer file)

  • Federal Bureau of Investigation US Department of Justice (1995) Crime in the United States (computer file)

  • Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM Rev 38(1):49–95

    Article  MathSciNet  MATH  Google Scholar 

  • Williams P (1996) Using neural networks to model conditional multivariate densities. Neural Comput 8(4):843–854

    Article  Google Scholar 

  • Williams P (1999) Matrix logarithm parametrizations for neural network covariance models. Neural Netw 12(2):299–308

    Article  Google Scholar 

  • Wei W, Pourahmadi M (2003) Nonparametric estimation of large covariance matrices of longitudinal data. Biometrika 90(4):831–844

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge conversations and discussions about some of the material in this paper with Misha van Beek, Linxi Chen, David Greenberg, Ron Kahn, Trevor Hastie, Rob Tibshirani, Emmanuel Candes, Mykel Kochenderfer, and Jonathan Tuck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Boyd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barratt, S., Boyd, S. Covariance prediction via convex optimization. Optim Eng 24, 2045–2078 (2023). https://doi.org/10.1007/s11081-022-09765-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-022-09765-w

Navigation