Log in

Temperature modulation effects on chaos and heat transfer in Darcy–Bénard convection using a local thermal non-equilibrium model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article investigates the effect of temperature modulation on convective heat transport in a fluid-saturated porous layer under local thermal non-equilibrium (LTNE) conditions. The boundary temperatures are modulated to have two parts: a steady part and an externally imposed time-dependent oscillatory part. An extended Darcy model with a time derivative term is used for the momentum equation for porous medium. A fifth-order Lorenz model is derived using a truncated Fourier series representation involving only two terms. The resulting heat transfer is calculated in terms of thermal Nusselt number by solving finite-amplitude equations numerically. The influence of the governing physical parameters on heat transport is analyzed and depicted graphically. It has been found that heat transfer can be effectively controlled by appropriately adjusting the external thermal mechanisms of the system. A study of streamlines and isotherms has also been conducted to get an insight of the flow phenomena under LTNE conditions. The plots of bifurcation diagrams and the largest Lyapunov exponent are also reported in the paper to describe the chaotic behavior of the fifth-order, non-autonomous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Nield, D.A., Bejan, A.: Convection in Porous Media, vol. 3. Springer, Cham (2006)

    Google Scholar 

  2. Bear, J.: Modeling Phenomena of Flow and Transport in Porous Media, vol. 1. Springer, Cham (2018)

    Book  Google Scholar 

  3. Ingham, D.B., Pop, I.: Transport Phenomena in Porous Media. Elsevier, Amsterdam (1998)

    Google Scholar 

  4. Vafai, K.: Handbook of Porous Media. Crc Press, Boca Raton (2015)

    Book  Google Scholar 

  5. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Courier Corporation, Chelmsford, MA (2013)

    Google Scholar 

  6. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  7. Idris, R., Hashim, I.: Effects of a magnetic field on chaos for low Prandtl number convection in porous media. Nonlinear Dyn. 62, 905–917 (2010)

    Article  MathSciNet  Google Scholar 

  8. Banu, N., Rees, D.A.S.: Onset of Darcy–Bénard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 45(11), 2221–2228 (2002)

    Article  Google Scholar 

  9. Straughan, B.: Global nonlinear stability in porous convection with a thermal non-equilibrium model. Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2066), 409–418 (2006)

    MathSciNet  Google Scholar 

  10. Straughan, B.: Porous convection with local thermal non-equilibrium temperatures and with Cattaneo effects in the solid. Proc. R. Soc. A Math. Phys. Eng. Sci. 469(2157), 20130187 (2013)

    MathSciNet  Google Scholar 

  11. Straughan, B.: Exchange of stability in Cattaneo-LTNE porous convection. Int. J. Heat Mass Transf. 89, 792–798 (2015)

    Article  Google Scholar 

  12. Ljung, A.L., Lundstrom, S.: Heat, mass and momentum transfer within an iron ore pellet during drying. In: Proceedings of CHT-08 ICHMT International Symposium on Advances in Computational Heat Transfer, Marrakech, Morocco, May 11–16, 2008, Begel House Inc. (2008)

  13. Luo, X., Guan, X., Li, M., Roetzel, W.: Dynamic behaviour of one-dimensional flow multistream heat exchangers and their networks. Int. J. Heat Mass Transf. 46(4), 705–715 (2003)

    Article  Google Scholar 

  14. Rees, D.A.S., Bassom, A.P., Siddheshwar, P.G.: Local thermal non-equilibrium effects arising from the injection of a hot fluid into a porous medium. J. Fluid Mech. 594, 379–398 (2008)

    Article  MathSciNet  Google Scholar 

  15. Anzelius, A.: Über erwärmung vermittels durchströmender medien. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 6(4), 291–294 (1926)

    Article  Google Scholar 

  16. Schumann, T.E.W.: Heat transfer: a liquid flowing through a porous prism. J. Frankl. Inst. 208(3), 405–416 (1929)

    Article  Google Scholar 

  17. Quintard, M., Kaviany, M., Whitaker, S.: Two-medium treatment of heat transfer in porous media: numerical results for effective properties. Adv. Water Resour. 20(2–3), 77–94 (1997)

    Article  Google Scholar 

  18. Rees, D.A.S., Pop, I.: Free convective stagnation-point flow in a porous medium using a thermal non-equilibrium model. Int. Commun. Heat Mass Transf. 26(7), 945–954 (1999)

    Article  Google Scholar 

  19. Siddabasappa, C.: A study on the influence of a local thermal non-equilibrium on the onset of Darcy–Bénard convection in a liquid-saturated anisotropic porous medium. J. Therm. Anal. Calorim. 147(10), 5937–5947 (2022)

    Article  Google Scholar 

  20. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)

    Article  Google Scholar 

  21. Kuznetsov, A.V., Nield, D.A.: Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid. Transp. Porous Media 83(2), 425–436 (2010)

    Article  Google Scholar 

  22. Basak, A.: Study of a periodically forced magnetohydrodynamic system using Floquet analysis and nonlinear Galerkin modelling. Nonlinear Dyn. 94(4), 2763–2784 (2018)

    Article  Google Scholar 

  23. Kanchana, C., Siddheshwar, P.G., Zhao, Y.: Regulation of heat transfer in Rayleigh–Bénard convection in Newtonian liquids and Newtonian nanoliquids using gravity, boundary temperature and rotational modulations. J. Therm. Anal. Calorim. 142(4), 1579–1600 (2020)

    Article  Google Scholar 

  24. Venezian, G.: Effect of modulation on the onset of thermal convection. J. Fluid Mech. 35(2), 243–254 (1969)

    Article  Google Scholar 

  25. Caltaoirone, J.P.: Stabilité d’une couche poreuse horizontale soumise a des conditions aux limites périodiques. Int. J. Heat Mass Transf. 19(8), 815–820 (1976)

    Article  Google Scholar 

  26. Chhuon, B., Caltagirone, J.P.: Stability of a horizontal porous layer with timewise periodic boundary conditions. J. Heat Transf. 101(2), 244–248 (1979)

    Article  Google Scholar 

  27. Gershuni, G.Z., Zhukhovitskii, E.M.: On parametric excitation of convective instability. J. Appl. Math. Mech. 27(5), 1197–1204 (1963)

    Article  MathSciNet  Google Scholar 

  28. Rosenblat, S., Tanaka, G.A.: Modulation of thermal convection instability. Phys. Fluids 14(7), 1319–1322 (1971)

    Article  Google Scholar 

  29. Rosenblat, S., Herbert, D.M.: Low-frequency modulation of thermal instability. J. Fluid Mech. 43(2), 385–398 (1970)

    Article  Google Scholar 

  30. Bhadauria, B.S., Bhatia, P.K.: Time-periodic heating of Rayleigh–Bénard convection. Phys. Scr. 66(1), 59 (2002)

    Article  Google Scholar 

  31. Malashetty, M.S., Swamy, M.: Effect of thermal modulation on the onset of convection in a rotating fluid layer. Int. J. Heat Mass Transf. 51(11–12), 2814–2823 (2008)

    Article  Google Scholar 

  32. Roppo, M.N., Davis, S.H., Rosenblat, S.: Bénard convection with time-periodic heating. Phys. Fluids 27(4), 796–803 (1984)

    Article  MathSciNet  Google Scholar 

  33. Siddheshwar, P.G., Bhadauria, B.S., Mishra, P., Srivastava, A.K.: Study of heat transport by stationary magneto-convection in a Newtonian liquid under temperature or gravity modulation using Ginzburg–Landau model. Int. J. Nonlinear Mech. 47(5), 418–425 (2012)

    Article  Google Scholar 

  34. Bhadauria, B.S., Siddheshwar, P.G., Kumar, J., Suthar, O.P.: Weakly nonlinear stability analysis of temperature/gravity-modulated stationary Rayleigh–Bénard convection in a rotating porous medium. Transp. Porous Media 92(3), 633–647 (2012)

    Article  MathSciNet  Google Scholar 

  35. Siddheshwar, P.G., Bhadauria, B.S., Srivastava, A.: An analytical study of nonlinear double-diffusive convection in a porous medium under temperature/gravity modulation. Transp. Porous Media 91(2), 585–604 (2012)

    Article  MathSciNet  Google Scholar 

  36. Siddheshwar, P.G., Bhadauria, B.S., Suthar, O.P.: Synchronous and asynchronous boundary temperature modulations of Bénard–Darcy convection. Int. J. Nonlinear Mech. 49, 84–89 (2013)

    Article  Google Scholar 

  37. Bhadauria, B.S., Kiran, P.: Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source. Ain Shams Eng. J. 5(4), 1287–1297 (2014)

    Article  Google Scholar 

  38. Manjula, S.H., Kiran, P., Narsimlu, G., Roslan, R.: The effect of modulation on heat transport by a weakly nonlinear thermal instability in the presence of applied magnetic field and internal heating. Int. J. Appl. Mech. Eng. 25(4), 96–115 (2020)

    Article  Google Scholar 

  39. Mathew, A., Pranesh, S.: The onset of Rayleigh–Bénard convection and heat transfer under two-frequency rotation modulation. Heat Transf. 50(7), 7472–7494 (2021)

    Article  Google Scholar 

  40. Bhadauria, B.S.: Combined effect of local thermal nonequilibrium and gravity modulation on thermal instability in micropolar nanofluid saturated porous media. J. Porous Media 27(2), 81–99 (2024)

    Article  Google Scholar 

  41. Ragupathi, E., Prakash, D., Muthtamilselvan, M., Al-Mdallal, Q.M.: A case study on heat transport of electrically conducting water based-CoFe\(_2\)O\(_4\) ferrofluid flow over the disc with various nanoparticle shapes and highly oscillating magnetic field. J. Magn. Magn. Mater. 589, 171624 (2024)

    Article  Google Scholar 

  42. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  43. Vadasz, P., Olek, S.: Weak turbulence and chaos for low Prandtl number gravity driven convection in porous media. Transp. Porous Media 37, 69–91 (1999)

  44. Vadasz, P., Olek, S.: Route to chaos for moderate Prandtl number convection in a porous layer heated from below. Transp. Porous Media 41, 211–239 (2000)

    Article  Google Scholar 

  45. Vadasz, P.: Local and global transitions to chaos and hysteresis in a porous layer heated from below. Transp. Porous Media 37(2), 213–245 (1999)

    Article  MathSciNet  Google Scholar 

  46. Vadasz, P.: Heat transfer regimes and hysteresis in porous media convection. J. Heat Transf. 123(1), 145–156 (2001)

    Article  Google Scholar 

  47. Vadasz, P.: Analytical prediction of the transition to chaos in Lorenz equations. Appl. Math. Lett. 23(5), 503–507 (2010)

    Article  MathSciNet  Google Scholar 

  48. Vadasz, P.: Capturing analytically the transition to weak turbulence and its control in porous media convection. J. Porous Media 18(11), 1075–1089 (2015)

    Article  Google Scholar 

  49. Vadasz, P.: Instability and route to chaos in porous media convection. Fluids 2(2), 26 (2017)

    Article  Google Scholar 

  50. Kanchana, C., Siddheshwar, P.G., Yi, Z.: The effect of boundary conditions on the onset of chaos in Rayleigh–Bénard convection using energy-conserving Lorenz models. Appl. Math. Model. 88, 349–366 (2020)

    Article  MathSciNet  Google Scholar 

  51. Siddheshwar, P.G., Stephen Titus, P.: Nonlinear Rayleigh–Bénard convection with variable heat source. J. Heat Transf. 135(12), 122502 (2013)

    Article  Google Scholar 

  52. Kiran, P., Bhadauria, B.S.: Chaotic convection in a porous medium under temperature modulation. Transp. Porous Media 107(3), 745–763 (2015)

    Article  MathSciNet  Google Scholar 

  53. Layek, G., Pati, N.: Chaotic thermal convection of couple-stress fluid layer. Nonlinear Dyn. 91, 837–852 (2018)

    Article  Google Scholar 

  54. **, M., Sun, K., Wang, H.: Dynamics and synchronization of the complex simplified Lorenz system. Nonlinear Dyn. 106, 2667–2677 (2021)

    Article  Google Scholar 

  55. Semenov, M.E., Borzunov, S.V., Meleshenko, P.A.: A new way to compute the Lyapunov characteristic exponents for non-smooth and discontinues dynamical systems. Nonlinear Dyn. 109(3), 1805–1821 (2022)

    Article  Google Scholar 

  56. Margazoglou, G., Magri, L.: Stability analysis of chaotic systems from data. Nonlinear Dyn. 111(9), 8799–8819 (2023)

    Article  Google Scholar 

  57. Sheu, L.J.: An autonomous system for chaotic convection in a porous medium using a thermal non-equilibrium model. Chaos Solitons Fractals 30(3), 672–689 (2006)

    Article  Google Scholar 

  58. Siddheshwar, P.G., Kanchana, C., Laroze, D.: A study of Darcy–Bénard regular and chaotic convection using a new local thermal non-equilibrium formulation. Phys. Fluids 33(4), 044107 (2021)

    Article  Google Scholar 

  59. Mamatha, A.L., Ravisha, M., Shivakumara, I.S.: Chaotic Cattaneo-LTNE porous convection. Waves Random Complex Media 34, 1–23 (2022)

    Article  Google Scholar 

  60. Surendar, R., Muthtamilselvan, M.: Helical force with a two-phase Cattaneo LTNE model on hyper-chaotic convection in the presence of magnetic field. Eur. Phys. J. Plus 138(7), 658 (2023)

    Article  Google Scholar 

  61. Bansal, A., Suthar, O.P.: A study on the effect of temperature modulation on Darcy–Bénard convection using a local thermal non-equilibrium model. Phys. Fluids 34(4), 044107 (2022)

  62. Hilborn, R.C.: Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press, New York (2000)

  63. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, vol. 41. Springer, Cham (2012)

    Google Scholar 

  64. Khayat, R.E.: Chaos and overstability in the thermal convection of viscoelastic fluids. J. Nonnewton. Fluid Mech. 53, 227–255 (1994)

    Article  Google Scholar 

  65. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16(3), 285–317 (1985)

Download references

Acknowledgements

The authors are grateful to MNIT Jaipur for providing research facilities and the financial assistance to AB. The authors thank the anonymous reviewers for their educative comments that helped improve the manuscript greatly.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om P. Suthar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, A., Suthar, O.P. Temperature modulation effects on chaos and heat transfer in Darcy–Bénard convection using a local thermal non-equilibrium model. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09869-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09869-1

Keywords

Navigation