Log in

Impact of non-smooth threshold control on a reaction–diffusion predator–prey model with time delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To explore the efficacy of integrated pest management, we modify the predator–prey (pest–natural enemy) model by incorporating Holling III functional response and transform it into a non-smooth Filippov control system. Unlike conventional Filippov systems, the model takes into consideration time delay and spatial heterogeneity. Consequently, we establish and examine a delayed reaction–diffusion Filippov prey–predator model. Firstly, the dynamics of the two subsystems are analyzed, which includes the existence and stability of the equilibrium points, along with determining the adequate conditions for local Hopf bifurcation. Subsequently, we implement a detailed investigation of the sliding mode dynamics and stability of the pseudoequilibrium. Theoretical and numerical simulations indicate that on the one hand, the threshold level should be prescribed adequately to reduce the pest population equal to or below the threshold level. On the other hand, reading from the boundary node and boundary focus bifurcations, slightly varying the economic threshold may save a failure control strategy by dragging the number of the pests from a regular equilibrium above the threshold to a boundary equilibrium or a pseudoequilibrium equal to the threshold. Furthermore, the sequent appearance of global sliding bifurcations including touching, sliding switching and crossing bifurcations expound that the incorporation of time delay not only complicates the dynamics of the system, but also brings more challenge for pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study. Others are not applicable.

References

  1. Volterra, V.: Variations and fluctuations of the number of individuals in animal species living together. ICES J. Mar. Sci. 3, 3–51 (1928)

    Article  Google Scholar 

  2. Lotka, A.: Elements of Physical Biology. William & Wilkins Companies, Philadelphia (1925)

    Google Scholar 

  3. Leslie, P.: Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245 (1948)

    Article  MathSciNet  Google Scholar 

  4. Jiao, X., Yang, Y.: Rich dynamics of a Filippov plant disease model with time delay. Commun. Nonlinear Sci. 114, 106642 (2022)

    Article  MathSciNet  Google Scholar 

  5. Jiao, X., Li, X., Yang, Y.: Dynamics and bifurcations of a Filippov Leslie–Gower predator–prey model with group defense and time delay. Chaos Soliton Fractals 162, 112436 (2022)

    Article  MathSciNet  Google Scholar 

  6. Wang, H., Yang, Y.: Dynamics analysis of a non-smooth Filippov pest–natural enemy system with time delay. Nonlinear Dyn. 111, 9681–9698 (2023)

    Article  Google Scholar 

  7. Moknia, K., Elaydi, S., Ch-Chaoui, M., Eladdadi, A.: Discrete evolutionary population models: a new approach. J. Biol. Dyn. 14(1), 454–478 (2020)

    Article  MathSciNet  Google Scholar 

  8. Liu, Y., Yang, Y.: Dynamics and bifurcation analysis of a delay non-smooth Filippov Leslie–Gower prey–predator model. Nonlinear Dyn. 111, 18541–18557 (2023)

    Article  Google Scholar 

  9. Wollkind, D.J., Logan, J.A.: Temperature-dependent predator–prey mite ecosystem on apple tree foliage. J. Math. Biol. 6, 265–83 (1978)

    Article  Google Scholar 

  10. Hu, D., Li, Y., Liu, M., Bai, Y.: Stability and Hopf bifurcation for a delayed predator–prey model with stage structure for prey and Ivlev-type functional response. Nonlinear Dyn. 99(4), 3323–50 (2020)

    Article  Google Scholar 

  11. Wang, W., Cai, Y., Zhu, Y., Guo, Z.: Allee-effect-induced instability in a reaction-diffusion predator-prey model. Abstr. Appl. Anal. 2013, 487810 (2013)

    MathSciNet  Google Scholar 

  12. Huang, Y., Li, F., Shi, J.: Stability of synchronized steady state solution of diffusive Lotka–Volterra predator–prey model. Appl. Math. Lett. 105, 106331 (2020)

    Article  MathSciNet  Google Scholar 

  13. Ma, X., Shen, S., Zhu, L.: Complex dynamic analysis of a reaction–diffusion network information propagation model with non-smooth control. Inf. Sci. 622, 1141–1161 (2023)

    Article  Google Scholar 

  14. Zhu, M., Xu, H.: Dynamics of a delayed reaction–diffusion predator–prey model with the effect of the toxins. Math. Biosci. Eng. 20(4), 6894–6911 (2023)

    Article  MathSciNet  Google Scholar 

  15. Liu, Z., Zhang, L., Bi, P.: On the dynamics of one-prey–n-predator impulsive reaction–diffusion predator–prey system with ratio-dependent functional response. J. Biol. Dyn. 12(1), 551–576 (2018)

    Article  MathSciNet  Google Scholar 

  16. Zhu, H., Zhang, X., Wang, G.: Effect of toxicant on the dynamics of a delayed diffusive predator–prey model. J. Appl. Math. Comput. 69(1), 355–379 (2023)

    Article  MathSciNet  Google Scholar 

  17. Ducrot, A., Guo, J., Shimojo, M.: Behaviors of solutions for a singular prey–predator model and its shadow system. J. Dyn. Differ. Equ. 30(3), 1063–1079 (2018)

    Article  MathSciNet  Google Scholar 

  18. Kuwamura, M.: Turing instabilities in prey–predator systems with dormancy of predators. J. Math. Biol. 71(1), 125–149 (2015)

    Article  MathSciNet  Google Scholar 

  19. Bie, Q., Peng, R.: qualitative analysis on a reaction–diffusion prey–predator model and the corresponding steady-states. Chin. Ann. Math. B 30(2), 207–220 (2009)

    Article  MathSciNet  Google Scholar 

  20. Liu, J., Zhang, X.: Stability and Hopf bifurcation of a delayed reaction–diffusion predator–prey model with anti-predator behaviour. Nonlinear Anal. Model. 24(3), 387–406 (2019)

    Article  MathSciNet  Google Scholar 

  21. Zhu, L.H., Zhou, M.T., Liu, Y., Zhang, Z.D.: Nonlinear dynamic analysis and optimum control of reaction–diffusion rumor propagation models in both homogeneous and heterogeneous networks. J. Math. Anal. Appl. 502, 125260 (2021)

    Article  MathSciNet  Google Scholar 

  22. Wang, J.L., Jiang, H.J., Ma, T.L., Hu, C.: Global dynamics of the multi-lingual SIR rumor spreading model with cross-transmitted mechanism. Chaos Solitons Fractals 126, 148–57 (2019)

    Article  MathSciNet  Google Scholar 

  23. Liu, L., **ang, C., Tang, G.: Dynamics analysis of periodically forced Filippov Holling II prey–predator model with integrated pest control. IEEE Access 7, 113889–113900 (2019)

    Article  Google Scholar 

  24. Tang, G., Qin, W., Tang, S.: Complex dynamics and switching transients in periodically forced Filippov prey–predator system. Chaos Solitons Fractals 61, 13–23 (2014)

    Article  MathSciNet  Google Scholar 

  25. Zhu, L., Zheng, W., Shen, S.: Dynamical analysis of a SI epidemic-like propagation model with non-smooth control. Chaos Solitons Fractals 169, 113273 (2023)

    Article  Google Scholar 

  26. Kuwamura, M.: Turing instabilities in prey–predator systems with dormancy of predators. J. Math. Biol. 71, 125–149 (2015)

    Article  MathSciNet  Google Scholar 

  27. Pei, Y., Li, C., Fan, S.: A mathematical model of a three species prey–predator system with impulsive control and Holling functional response. Appl. Math. Comput. 219(23), 10945–10955 (2013)

    MathSciNet  Google Scholar 

  28. Qin, W., Tan, X., Shi, X., Chen, J., Liu, X.: Dynamics and bifurcation analysis of a Filippov predator–prey ecosystem in a seasonally fluctuating environment. Int. J. Bifurc. Chaos 29(2), 1950020 (2019)

    Article  MathSciNet  Google Scholar 

  29. Hamdallah, S., Arafa, A., Tang, S., Xu, Y.: Complex dynamics of a Filippov three-species food chain model. Int. J. Bifurc. Chaos 31(05), 2150074 (2021)

    Article  MathSciNet  Google Scholar 

  30. Hamdallah, S., Tang, S.: Stability and bifurcation analysis of Filippov food chain system with food chain control strategy. Discrete Contin. Dyn. B 25(5), 1631–1647 (2020)

    MathSciNet  Google Scholar 

  31. Zhang, X., Tang, S.: Existence of multiple sliding segments and bifurcation analysis of Filippov prey–predator model. Appl. Math. Comput. 239, 265–284 (2014)

    MathSciNet  Google Scholar 

  32. Qin, W., Tan, X., Shi, X., Tosoto, M., Liu, X.: Sliding dynamics and bifurcations in the extended nonsmooth Filippov ecosystem. Int. J. Bifurc. Chaos 31(8), 2150119 (2021)

    Article  MathSciNet  Google Scholar 

  33. Qin, W., Tan, X., Tosato, M., Liu, X.: Threshold control strategy for a non-smooth Filippov ecosystem with group defense. Appl. Math. Comput. 362, 124532 (2019)

    MathSciNet  Google Scholar 

  34. Arafa, A.A., Hamdallah, S., Tang, S., Xu, Y., Mahmoud, G.M.: Dynamics analysis of a Filippov pest control model with time delay. Commun. Nonlinear Sci. Numer. Simul. 101, 105865 (2021)

    Article  MathSciNet  Google Scholar 

  35. Mahmoud, G.M., Arafa, A.A., Mahmoud, E.E.: Bifurcations and chaos of time delay Lorenz system with dimension \(2n+1\). Eur. Phys. J. Plus 132(11), 461 (2017)

    Article  Google Scholar 

  36. Onana, M., Mewoli, B., Tewa, J.: Hopf bifurcation analysis in a delayed Leslie–Gower predator–prey model incorporating additional food for predators, refuge and threshold harvesting of preys. Nonlinear Dyn. 100(3), 3007–3028 (2020)

    Article  Google Scholar 

  37. Yuan, R., Jiang, W., Wang, Y.: Saddle–node–Hopf bifurcation in a modified Leslie–Gower predator–prey model with time-delay and prey harvesting. J. Math. Anal. Appl. 422(2), 1072–1090 (2015)

  38. Zhang, X., Zhao, H.: Dynamics analysis of a delayed reaction–diffusion predator–prey system with non-continuous threshold harvesting. Math. Biosci. 289, 130–141 (2017)

    Article  MathSciNet  Google Scholar 

  39. Zhang, X., Zhao, H., Yuan, Y.: Impact of discontinuous harvesting on a diffusive predator–prey model with fear and Allee effect. Z. Angew. Math. Phys. 73(4), 168 (2022)

  40. Zhang, X., Zhao, H.: Dynamics and pattern formation of a diffusive predator–prey model in the presence of toxicity. Nonlinear Dyn. 95(3), 2163–2179 (2019)

    Article  Google Scholar 

  41. Dubey, B., Kumar, A., Maiti, A.: Global stability and Hopf bifurcation of prey–predator system with two discrete delays including habitat complexity and prey refuge. Commun. Nonlinear Sci. Numer. Simul. 67, 528–554 (2019)

    Article  MathSciNet  Google Scholar 

  42. Wei, J., Zhang, C.: Stability analysis in a first-order complex differential equations with delay. Nonlinear Anal. Theor. 59(5), 657–671 (2004)

    MathSciNet  Google Scholar 

Download references

Funding

This work is supported by Shandong Provincial Natural Science Foundation of China (No. ZR2023YQ002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You** Yang.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yang, Y. Impact of non-smooth threshold control on a reaction–diffusion predator–prey model with time delay. Nonlinear Dyn 112, 14637–14656 (2024). https://doi.org/10.1007/s11071-024-09796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09796-1

Keywords

Navigation