Log in

Self-sustained dynamics by modeling competing PHA-producers and non-PHA-producers bacteria population for a limited resource: local and homoclinic bifurcation analysis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We propose a mathematical model for two species competing for a limited resource associated to polyhydroxyalkanoate (PHA) production, which possesses regime of stable states: stable equilibrium, and periodic and aperiodic oscillations. Such regimes of stable oscillations are absent in the model without taking into account PHA production but is known to exist in experimental model associated to the production of PHA. It explains the capacity of the system to sustain itself at the lowest value of resource. Thus, the proposed system provides a simpler four-dimensional model containing monod functions with such behaviours. Using analytical tools and numerical bifurcation analysis, we describe parameter regions and bifurcation structures leading to the existence and the coexistence between stable, unstable equilibrium and limit cycle. These explain critical parameter sensitivity impact on the process. Considering the effects on the proposed system under a frequent alternation of the input resource, we investigate how the increase of the length of the feast period in the Feast-Famine conditions, increases the PHA-production or decreases the lowest value of the resource at the equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data from simulations that support the findings of this study are available on request from the corresponding author, B. I. Camara.

References

  1. Steinbuchel, A.: Polyhydroxyalkanoic acids. In: Byrom, D. (ed.) Biomaterials: Novel Materials from Biological Sources, pp. 123–213. Stockton Press, New York (1991)

    Chapter  Google Scholar 

  2. Tan, G.Y.A., Chen, C.L., Ge, L., Wang, L., Razaad, I.M.N., Li, Y., Zhao, L., Mo, Y., Wang, J.-Y.: Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6, 706–754 (2014). https://doi.org/10.3390/polym6030706

    Article  Google Scholar 

  3. Albuquerque, M.G.E., Torres, C.A.V., Reis, M.A.M.: Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: effect of the influent substrate concentration on culture selection. Water Res. 44, 3419–3433 (2010)

    Article  Google Scholar 

  4. Mozumdera, M.S.I., Aminb, M.S.A., Shishira, M.F.R.: Unified model to predict and enhance the mixed culture polyhydroxyalkanoates (PHA) production. Bioresour. Technol. Rep. 11, 100537 (2020)

    Article  Google Scholar 

  5. Huang, L., Chen, Z., Wen, Q., Zhao, L., Lee, D.-J., Yang, L., Wang, Y.: Insights into Feast-Famine polyhydroxyalkanoate (PHA)-producer selection: microbial community succession, relationships with system function and underlying forces. Water Res. 131, 167–176 (2018)

    Article  Google Scholar 

  6. Sruamsiri, D., Thayanukul, P., Suwannasilp, B.B.: In situ identification of polyhydroxyalkanoate (PHA)-accumulating microorganisms in mixed microbial cultures under feast/famine conditions. Sci. Rep. 10, 3752 (2020). https://doi.org/10.1038/s41598-020-60727-7

    Article  Google Scholar 

  7. Dias, J.M.L., Lemos, P.C., Serafim, L.S., Oliveira, C., Eiroa, M., Albuquerque, M.G.E., Ramos, A.M., Oliveira, R., Reis, M.A.M.: Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol. Biosci. 6, 885–906 (2006)

    Article  Google Scholar 

  8. Moser, A.: Kinetics of batch fermentations. Biotechnology 2 (1985)

  9. Mahanta, D., Borah, M., Saikia, P.: Study on kinetic models for analysing the bacterial growth rate. Am. Int. J. Res. Sci. Technol. Eng. Math. 8, 68–72 (2014)

    Google Scholar 

  10. Novak, M., Koller, M., Braunegg, G., Horvat, P.: Mathematical modelling as a tool for optimized PHA production. Chem. Biochem. Eng. Q. 29, 183–220 (2015)

    Article  Google Scholar 

  11. Monod, J.: The growth of bacterial cultures. Rev. Microbiol. 3, 371–394 (1949)

    Article  Google Scholar 

  12. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003)

    Article  MathSciNet  Google Scholar 

  13. Canavier, C.C., Baxter, D.A., Clark, J.W., Byrne, J.H.: Multiple modes of activity in a model neuron suggest a novel mechanism for the effects of neuromodulators. J. Neuro-physiol. 72, 872–882 (1994)

    Google Scholar 

  14. Tilman, D.: Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58, 338–348 (1977)

    Article  Google Scholar 

  15. Tilman, D.: Resources: a graphical-mechanistic approach to competition and predation. Am. Nat. 116, 362–393 (1980)

    Article  Google Scholar 

  16. Tilman, D., Mattson, M., Langer, S.: Competition and nutrient kinetics along a temperature gradient: an experimental test of a mechanistic approach to niche theory. Limnol. Oceanogr. 26(6), 1020–1033 (1981)

    Article  Google Scholar 

  17. Tilman, D.: Resource Competition and Community Structure. Princeton University Press, Princeton (1982)

    Google Scholar 

  18. Tilman, D.: The Resource-Ratio Hypothesis of plant succession. Am. Nat. 125, 827–852 (1985)

    Article  Google Scholar 

  19. Tilman, D., Lehman, C.L., Thomson, K.T.: Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl. Acad. Sci. USA 94, 1857–1861 (1997)

    Article  Google Scholar 

  20. Daufresne, T., Hedin, L.O.: plant coexistence depends on ecosystem nutrient cycles: extension of the resource-ratio theory. PNAS (2005). https://doi.org/10.1073/pnas.0406427102

  21. Jiang, Y., Hebly, M., Kleerebezem, R., Muyzer, G., Van Loosdrecht, M.: Metabolic modeling of mixed substrate uptake for polyhydroxyalkanoate (PHA) production. Water Res. 45, 1309–21 (2011)

    Article  Google Scholar 

  22. Louca, S., Doebeli, M.: Transient dynamics of competitive exclusion in microbial communities. Environ. Microbiol. 18, 1863–1874 (2016)

    Article  Google Scholar 

  23. Hardin, G.: The competitive exclusion principle. Science 131, 1292–1297 (1960)

    Article  Google Scholar 

  24. Lehman, C.L., Tilman, D.: Biodiversity, stability, and productivity in competitive communities. Am. Nat. 156(5), 534–552 (2000)

    Article  Google Scholar 

  25. **, Q., Roden, E.E., Giska, J.R.: Geomicrobial kinetics: extrapolating laboratory studies to natural environments. Geomicrobiol J 30, 173–185 (2013)

    Article  Google Scholar 

  26. Hastings, A.: Transients: the key to long-term ecological understanding? Trends Ecol Evol 19, 39–45 (2004)

    Article  Google Scholar 

  27. Bosi, S., Desmarchelier, D.: A simple method to study local bifurcations of three and four-dimensional systems: characterizations and economic applications. Documents de recherche 17-01, Centre d’Études des Politiques Économiques (EPEE), Université d’Evry Val d’Essonne (2017)

  28. Chong, M.S., Shahrill, M., Crossley, L., Madzvamuse, A.: The stability analyses of the mathematical models of hepatitis c virus infection. Mod. Appl. Sci. 9(3), 250 (2015)

    Article  Google Scholar 

  29. Enciso, G., Sontag, E.D.: On the stability of a model of testosterone dynamics. J. Math. Biol. 46(6), 627–634 (2004). https://doi.org/10.1007/s00285-004-0291-5

    Article  MathSciNet  Google Scholar 

  30. Touboula, J.D., Staverd, A.C., Levine, S.A.: On the complex dynamics of savanna landscapes. PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1712356115

Download references

Acknowledgements

The financial supports of this work have been EMS-Simons for Africa and Lorraine University, we are greatly thankful for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Camara.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Principal minors computation of the Jacobian matrix at model equilibria

Principal minors computation of the Jacobian matrix at model equilibria

For each equilibrium, the expressions of the elements of the Jacobian matrix and the principal minors are below:

  1. (a)

    \((N_P, N_O, R, PHA)^*\)=\((0, 0, R, 0)^*\)

    $$\begin{aligned} A= & {} g_P\dfrac{R^*}{R^*+K_P}-m_P;\quad B=-Q_Pg_P\dfrac{R^*}{R^*+K_P};\\ C= & {} 0;\quad D=g_O\dfrac{R^*}{R^*+K_O}-m_O;\\ E= & {} -Q_Og_O\dfrac{R^*}{R^*+K_O};\quad F=0;\\ G= & {} 0;\quad H=-\alpha ; \\ I= & {} 0;\quad J=-m_{PHA}.\\ \end{aligned}$$
  1. (b)

    \((N_P, N_O, R, PHA)^*\)=\((0, N_O, R, 0)^*\)

    $$\begin{aligned} A= & {} g_P\dfrac{R^*}{R^*+K_P}-m_P;\quad B=-Q_Pg_P\dfrac{R^*}{R^*+K_P};\\ C= & {} 0;\quad D=g_O\dfrac{R^*}{R^*+K_O}-m_O;\\ E= & {} -Q_Og_O\dfrac{R^*}{R^*+K_O};\quad F=0;\\ G= & {} N_O^*g_O\dfrac{K_O}{(R^*+K_O)^2};\quad H\\= & {} -\alpha -Q_Og_ON_O^*\dfrac{K_O}{(R^*+K_O)^2};\\ I= & {} 0;\quad J=-m_{PHA}.\\ \end{aligned}$$
  1. (c)

    \((N_P, N_O, R, PHA)^*\)=\((N_P, 0, R, 0)^*\)

    $$\begin{aligned} A= & {} g_P\dfrac{R^*}{R^*+K_P}-m_P;\quad B=-Q_Pg_P\dfrac{R^*}{R^*+K_P};\\ C= & {} 0;\quad D=g_O\dfrac{R^*}{R^*+K_O}-m_O;\\ E= & {} -Q_Og_O\dfrac{R^*}{R^*+K_O}; \quad F=N_P^*g_P\dfrac{K_P}{(R^*+K_P)^2};\\ G= & {} 0;\quad H=-\alpha -Q_Pg_PN_P^*\dfrac{K_P}{(R^*+K_P)^2};\\ I= & {} \dfrac{bN_P^*}{K_{PHA}};\quad J=\dfrac{hN_P^*}{K_{PHA}}-m_{PHA}.\\ \end{aligned}$$
  1. (d)

    \((N_P, N_O, R, PHA)^*\)=\((N_P, 0, R, PHA)^*\)

    $$\begin{aligned} A= & {} g_P\dfrac{R^*}{R^*+K_P}+b\dfrac{PHA^*}{PHA^*+K_{PHA}}-m_P;\quad B\\= & {} -Q_Pg_P\dfrac{R^*}{R^*+K_P};\\ C= & {} h\dfrac{PHA^*}{PHA^*+K_{PHA}};\quad D=g_O\dfrac{R^*}{R^*+K_O}-m_O;\\ E= & {} -Q_Og_O\dfrac{R^*}{R^*+K_O};\quad F=N_P^*g_P\dfrac{K_P}{(R^*+K_P)^2};\\ G= & {} 0;\quad H=-\alpha -Q_Pg_PN_P^*\dfrac{K_P}{(R^*+K_P)^2};\\ I= & {} bN_P^*\dfrac{K_{PHA}}{(PHA^*+K_{PHA})^2};\quad J\\= & {} hN_P^*\dfrac{K_{PHA}}{(PHA^*+K_{PHA})^2}-m_{PHA}.\\ \end{aligned}$$
  1. (e)

    \((N_P, N_O, R, PHA)^*\)=\((N_P, N_O, R, 0)^*\)

    $$\begin{aligned} A= & {} g_P\dfrac{R^*}{R^*+K_P}-m_P;\quad B=-Q_Pg_P\dfrac{R^*}{R^*+K_P};\\ C= & {} 0;\quad D=g_O\dfrac{R^*}{R^*+K_O}-m_O;\\ E= & {} -Q_Og_O\dfrac{R^*}{R^*+K_O};\quad F=N_P^*g_P\dfrac{K_P}{(R^*+K_P)^2};\\ G= & {} N_O^*g_O\dfrac{K_O}{(R^*+K_O)^2};\quad H\\= & {} -\alpha -Q_Pg_PN_P^*\dfrac{K_P}{(R^*+K_P)^2}\\{} & {} -Q_Og_ON_O^*\dfrac{K_O}{(R^*+K_O)^2};\\ I= & {} \dfrac{bN_P^*}{K_{PHA}};\quad J=\dfrac{hN_P^*}{K_{PHA}}-m_{PHA}.\\ \end{aligned}$$
  1. (f)

    \((N_P, N_O, R, PHA)^*\)=\((N_P, N_O, R, PHA)^*\)

    $$\begin{aligned} A= & {} g_P\dfrac{R^*}{R^*+K_P}+b\dfrac{PHA^*}{PHA^*+K_{PHA}}-m_P;\quad B\\= & {} -Q_Pg_P\dfrac{R^*}{R^*+K_P};\\ C= & {} h\dfrac{PHA^*}{PHA^*+K_{PHA}};\quad D=g_O\dfrac{R^*}{R^*+K_O}-m_O;\\ E= & {} -Q_Og_O\dfrac{R^*}{R^*+K_O};\quad F=N_P^*g_P\dfrac{K_P}{(R^*+K_P)^2};\\ G= & {} N_O^*g_O\dfrac{K_O}{(R^*+K_O)^2};\quad H\\= & {} -\alpha -Q_Pg_PN_P^*\dfrac{K_P}{(R^*+K_P)^2}\\{} & {} -Q_Og_ON_O^*\dfrac{K_O}{(R^*+K_O)^2};\\ I= & {} bN_P^*\dfrac{K_{PHA}}{(PHA^*+K_{PHA})^2};\quad J\\= & {} hN_P^*\dfrac{K_{PHA}}{(PHA^*+K_{PHA})^2}-m_{PHA}.\\ \end{aligned}$$

The characteristic polynomial versus the eigen value \(\lambda \) is given by:

$$\begin{aligned}{} & {} P(\lambda )=(\lambda -\lambda _1)(\lambda -\lambda _2)(\lambda -\lambda _3)(\lambda -\lambda _4)\nonumber \\ {}{} & {} \quad =\lambda ^4-T_r(J)\lambda ^3+S_2\lambda ^2-S_3\lambda + Det(J), \end{aligned}$$
(A1)

where,

  1. (i)

    \((N_P, N_O, R, PHA)^*\)=\((0, 0, R, 0)^*\)

    $$\begin{aligned} S_1= & {} A+D+H+J =T_r(J);\\ S_2= & {} \begin{vmatrix}H&0\\0&J\end{vmatrix} +\begin{vmatrix}D&0\\0&J\end{vmatrix}+\begin{vmatrix}D&0\\E&H\end{vmatrix}+\begin{vmatrix}A&0\\0&J\end{vmatrix}+\begin{vmatrix}A&0\\B&H\end{vmatrix}+\begin{vmatrix}A&0\\0&D\end{vmatrix};\\ {}= & {} HJ+DJ+DH+AJ+AH+AD;\\ S_3= & {} \begin{vmatrix}D&0&0\\E&H&0\\0&0&J\end{vmatrix}+\begin{vmatrix}A&0&0\\B&H&0\\0&0&J\end{vmatrix}+\begin{vmatrix}A&0&0\\0&D&0\\0&0&J\end{vmatrix}\\{} & {} +\begin{vmatrix}A&0&0\\0&D&0\\B&E&H\end{vmatrix}; \\ {}= & {} DHJ+AHJ+ADJ+ADH;\\ S_4= & {} \begin{vmatrix}A&0&0&0\\0&D&0&0\\B&E&H&0\\0&0&0&J\end{vmatrix}=AJDH=Det(J); \end{aligned}$$

    A, B, D, E, H, and J have the same expression as in 2.(a).

  1. (ii)

    \((N_P, N_O, R, PHA)^*\)=\((0, N_O, R, 0)^*\)

    $$\begin{aligned} S_1= & {} A+D+H+J =T_r(J);\\ S_2= & {} \begin{vmatrix}H&0\\0&J\end{vmatrix} +\begin{vmatrix}D&0\\0&J\end{vmatrix}+\begin{vmatrix}D&G\\E&H\end{vmatrix}+\begin{vmatrix}A&0\\0&J\end{vmatrix}+\begin{vmatrix}A&0\\B&H\end{vmatrix}+\begin{vmatrix}A&0\\0&D\end{vmatrix};\\ {}= & {} HJ+DJ+DH-EG+AJ+AH+AD;\\ S_3= & {} \begin{vmatrix}D&G&0\\E&H&0\\0&0&J\end{vmatrix}+\begin{vmatrix}A&0&0\\B&H&0\\0&0&J\end{vmatrix}+\begin{vmatrix}A&0&0\\0&D&0\\0&0&J\end{vmatrix}\\{} & {} +\begin{vmatrix}A&0&0\\0&D&G\\B&E&H\end{vmatrix}; \\ {}= & {} DHJ-GEJ+AHJ+ADJ+ADH-AEG;\\ S_4= & {} \begin{vmatrix}A&0&0&0\\0&D&G&0\\B&E&H&0\\0&0&0&J\end{vmatrix}=AJ(DH-GE)=Det(J); \end{aligned}$$

    A, B, D, E, G, H, and J have the same expression as in 2.(b).

  1. (iii)

    \((N_P, N_O, R, PHA)^*\)=\((N_P, 0, R, 0)^*\)

    $$\begin{aligned} S_1= & {} A+D+H+J =T_r(J);\\ S_2= & {} \begin{vmatrix}H&0\\0&J\end{vmatrix} +\begin{vmatrix}D&0\\0&J\end{vmatrix}+\begin{vmatrix}D&0\\E&H\end{vmatrix}+\begin{vmatrix}A&I\\0&J\end{vmatrix}+\begin{vmatrix}A&F\\B&H\end{vmatrix}+\begin{vmatrix}A&0\\0&D\end{vmatrix};\\ {}= & {} HJ+DJ+DH+AJ+AH-BF+AD;\\ S_3= & {} \begin{vmatrix}D&0&0\\E&H&0\\0&0&J\end{vmatrix}+\begin{vmatrix}A&F&I\\B&H&0\\0&0&J\end{vmatrix}+\begin{vmatrix}A&0&I\\0&D&0\\0&0&J\end{vmatrix}+\begin{vmatrix}A&0&F\\0&D&0\\B&E&H\end{vmatrix}; \\ {}= & {} DHJ+AHJ-FBJ+ADJ+ADH-FBD;\\ S_4= & {} \begin{vmatrix}A&0&F&I\\0&D&0&0\\B&E&H&0\\0&0&0&J\end{vmatrix}=AJDH-FDBJ=Det(J); \end{aligned}$$

    A, B, D, E, F, H, I, and J have the same expression as in 2.(c).

  1. (iv)

    \((N_P, N_O, R, PHA)^*\)=\((N_P, 0, R, PHA)^*\)

    $$\begin{aligned} S_1= & {} A+D+H+J =T_r(J);\\ S_2= & {} \begin{vmatrix}H&0\\0&J\end{vmatrix} +\begin{vmatrix}D&0\\0&J\end{vmatrix}+\begin{vmatrix}D&0\\E&H\end{vmatrix}+\begin{vmatrix}A&I\\C&J\end{vmatrix}+\begin{vmatrix}A&F\\B&H\end{vmatrix}+\begin{vmatrix}A&0\\0&D\end{vmatrix};\\ {}= & {} HJ+DJ+DH+AJ-CI+AH-BF+AD;\\ S_3= & {} \begin{vmatrix}D&0&0\\E&H&0\\0&0&J\end{vmatrix}+\begin{vmatrix}A&F&I\\B&H&0\\C&0&J\end{vmatrix}+\begin{vmatrix}A&0&I\\0&D&0\\C&0&J\end{vmatrix}+\begin{vmatrix}A&0&F\\0&D&0\\B&E&H\end{vmatrix}; \\ {}= & {} DHJ+AHJ-FBJ-ICH+ADJ-ICD\\ {}{} & {} +ADH-FBD;\\ S_4= & {} \begin{vmatrix}A&0&F&I\\0&D&0&0\\B&E&H&0\\C&0&0&J\end{vmatrix}=AJDH-FDBJ-ICDH=Det(J); \end{aligned}$$

    A, B, C, D, E, F, H, I, and J have the same expression as in 2.(d).

  1. (v)

    \((N_P, N_O, R, PHA)^*\)=\((N_P, N_O, R, 0)^*\)

    $$\begin{aligned} S_1= & {} A+D+H+J =T_r(J);\\ S_2= & {} \begin{vmatrix}H&0\\0&J\end{vmatrix} +\begin{vmatrix}D&0\\0&J\end{vmatrix}+\begin{vmatrix}D&G\\E&H\end{vmatrix}+\begin{vmatrix}A&I\\C&J\end{vmatrix}+\begin{vmatrix}A&F\\B&H\end{vmatrix}+\begin{vmatrix}A&0\\0&D\end{vmatrix};\\ {}= & {} HJ+DJ+DH-EG+AJ-CI+AH-BF+AD;\\ S_3= & {} \begin{vmatrix}D&G&0\\E&H&0\\0&0&J\end{vmatrix}+\begin{vmatrix}A&F&I\\B&H&0\\C&0&J\end{vmatrix}+\begin{vmatrix}A&0&I\\0&D&0\\C&0&J\end{vmatrix}+\begin{vmatrix}A&0&F\\0&D&G\\B&E&H\end{vmatrix};\\= & {} DHJ-GEJ+AHJ-FBJ-ICH+ADJ\\ {}{} & {} -ICD+ADH-AEG-FBD;\\ S_4= & {} \begin{vmatrix}A&0&F&I\\0&D&G&0\\B&E&H&0\\C&0&0&J\end{vmatrix}\\= & {} AJ(DH-GE)-FDBJ-IC(DH-GE)=Det(J); \end{aligned}$$

    A, B, D, E, F, G, H, I, and J have the same expression as in 2.(e).

  1. (vi)

    \((N_P, N_O, R, PHA)^*\)=\((N_P, N_O, R, PHA)^*\)

    $$\begin{aligned} S_1= & {} A+D+H+J =T_r(J);\\ S_2= & {} \begin{vmatrix}H&0\\0&J\end{vmatrix} +\begin{vmatrix}D&0\\0&J\end{vmatrix}+\begin{vmatrix}D&G\\E&H\end{vmatrix}+\begin{vmatrix}A&I\\0&J\end{vmatrix}+\begin{vmatrix}A&F\\B&H\end{vmatrix}+\begin{vmatrix}A&0\\0&D\end{vmatrix};\\ {}= & {} HJ+DJ+DH-EG+AJ+AH-BF+AD;\\ S_3= & {} \begin{vmatrix}D&G&0\\E&H&0\\0&0&J\end{vmatrix}+\begin{vmatrix}A&F&I\\B&H&0\\0&0&J\end{vmatrix}+\begin{vmatrix}A&0&I\\0&D&0\\0&0&J\end{vmatrix}+\begin{vmatrix}A&0&F\\0&D&G\\B&E&H\end{vmatrix}; \\ {}= & {} DHJ-GEJ+AHJ-FBJ+ADJ\\ {}{} & {} +ADH-AEG-FBD;\\ S_4= & {} \begin{vmatrix}A&0&F&I\\0&D&G&0\\B&E&H&0\\0&0&0&J\end{vmatrix}\\= & {} AJ(DH-GE)-FDBJ=Det(J); \end{aligned}$$

    A, B, C, D, E, F, G, H, I, and J have the same expression as in 2.(f).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagne Nkounga, I.B., Bauda, P., Yamapi, R. et al. Self-sustained dynamics by modeling competing PHA-producers and non-PHA-producers bacteria population for a limited resource: local and homoclinic bifurcation analysis. Nonlinear Dyn 112, 9673–9701 (2024). https://doi.org/10.1007/s11071-024-09541-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09541-8

Keywords

Navigation