Log in

A nonlinear model for dynamic performance analysis of gas foil bearing-rotor system considering frictional contacts

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamic behaviors of gas foil bearing-rotor system are greatly affected by the dam** resulting from friction inside foil structure. However, challenges exist in theoretical study when introducing the friction into the dynamic system. This paper presents an effective nonlinear model considering frictional contacts to study the dynamic performance of foil bearing-rotor system. The top foil and bump foil are modeled with the beam elements to consider the sagging effect and bump interactions. Instead of treating the structural dam** caused by friction as equivalent viscous dam**, the friction force is calculated by utilizing a regularization technique to capture its nonlinear behavior. The simulations are numerically implemented using a direct implicit integration scheme with consideration of unsteady hydrodynamic pressure, rotor motion, deflection of foil structure and their coupling relationships. Using this model, the dissipative characteristics and stability of foil bearing-rotor system are investigated. The results show that the friction leads to hysteretic loops and energy dissipation, and the stick motion becomes more prevalent with the increasing friction coefficient. The dynamic system exhibits rich and complicated nonlinear behaviors. With the change of system parameters, the rotor can experience periodic, quasi-periodic and multi-periodic motions. Only synchronous vibration occurs at low rotational speeds, but large-amplitude subsynchronous vibrations are dominant when rotational speed exceeds the onset speed of instability. Increasing the nominal clearance contributes to avoid the appearance of subsynchronous vibrations, resulting in a more stable system. The predictions can provide guidance for determining the operating and design parameters of foil bearing-rotor system in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

A :

Cross-sectional area

C :

Nominal clearance

C :

Global dam** matrix

c t :

Smooth parameter

E :

Young’s modulus

F e :

Element film reaction force

F N :

Normal contact force

F p :

Hydrodynamic force

F p :

Hydrodynamic force vector

F T :

Tangential friction force

F ub :

Unbalance force

h :

Film thickness

H :

Dimensionless film thickness

h b :

Bump height

I :

Moment of inertia

I 2×2 :

2 × 2 Identity matrix

J :

Jacobian matrix

K :

Global stiffness matrix

k e :

Element stiffness matrix

L :

Bearing width

L e :

Element length

L e :

Transformation matrix

M :

Global mass matrix

m e :

Element mass matrix

m s :

Rotor mass

N 1-N 6 :

Shape functions

N b :

Number of bumps

p :

Pressure

P :

Dimensionless pressure

p a :

Ambient pressure

p θ :

Line pressure load

Q c :

Contact force vector

R :

Bearing radius

S :

Applied static load

s b :

Bump pitch

t :

Operating time

t b :

Bump foil thickness

t f :

Top foil thickness

u :

X-direction displacement

\(\dot{u}\) :

X-direction velocity

u :

Displacement vector

\({\dot{\mathbf{u}}}\) :

Velocity vector

\({\ddot{\mathbf{u}}}\) :

Acceleration vector

u c :

Nodal displacement vector of contact

u n :

Displacement vector of a node

u r :

Unbalance

\(\ddot{u}_{s}\) :

Rotor acceleration

v :

y-direction displacement

v T :

Deflection of top foil

z, Z :

Axial coordinate

α :

Penalty parameter

β :

Included angle

γ :

Proportional parameter

δ :

Newmark method parameter

ε x :

X-direction eccentricity ratio

ε y :

Y-direction eccentricity ratio

θ :

Circumferential angle

θ f :

Rotational degree of freedom

κ :

Newmark method parameter

μ :

Friction coefficient

μ a :

Viscosity

ν :

Excitation frequency ratio

ξ :

Reference coordinate

ρ :

Density

τ :

Dimensionless time

ω :

Rotational speed

ω e :

Excitation frequency

Λ:

Bearing number

B :

Bump foil

e :

Element

l :

The lth iteration

N :

Normal

P :

Point P

P1; P2:

Node P1; node P2

Q :

Node Q

T :

Top foil; transposition; tangential

x, X :

x or X direction

y,Y :

y or Y direction

References

  1. Samanta, P., Murmu, N., Khonsari, M.: The evolution of foil bearing technology. Tribol. Int. 135, 305–323 (2019). https://doi.org/10.1016/j.triboint.2019.03.021

    Article  Google Scholar 

  2. Heshmat, H., Walowit, J., Pinkus, O.: Analysis of gas-lubricated foil journal bearings. J. Lubr. Technol. 105(4), 647–655 (1983). https://doi.org/10.1115/1.3254697

    Article  Google Scholar 

  3. Xu, F., Liu, Z., Zhang, G., **e, L.: Hydrodynamic analysis of compliant foil bearings with modified top foil model. In: Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, pp. 567–576 (2011). https://doi.org/10.1115/GT2011-46018

  4. Bhore, K.P., Darpe, A.K.: Nonlinear transient stability analysis of meso-scale rotor supported on gas foil journal bearings. J. Vib. Eng. Technol. 7, 399–406 (2019). https://doi.org/10.1007/s42417-019-00128-x

    Article  Google Scholar 

  5. Bonello, P., Pourashraf, T.: A comparison of modal analyses of foil-air bearing rotor systems using two alternative linearisation methods. Mech. Syst. Signal Process. 170, 108714 (2022). https://doi.org/10.1016/j.ymssp.2021.108714

    Article  Google Scholar 

  6. Papafragkos, P., Gavalas, I., Raptopoulos, I., Chasalevris, A.: Optimizing energy dissipation in gas foil bearings to eliminate bifurcations of limit cycles in unbalanced rotor systems. Nonlinear Dyn. 111(4), 67–95 (2022). https://doi.org/10.1007/s11071-022-07837-1

    Article  Google Scholar 

  7. Lez, S.L., Arghir, M., Frene, J.: A new bump-type foil bearing structure analytical model. J. Eng. Gas Turbines Power 129(4), 1047–1057 (2007). https://doi.org/10.1115/1.2747638

    Article  Google Scholar 

  8. Feng, K., Kaneko, S.: Analytical model of bump-type foil bearings using a link-spring structure and a finite-element shell model. J. Tribol. 132(2), 021706 (2010). https://doi.org/10.1115/1.4001169

    Article  Google Scholar 

  9. Baum, C., Hetzler, H., Schröders, S., Leister, T., Seemann, W.: A computationally efficient nonlinear foil air bearing model for fully coupled, transient rotor dynamic investigations. Tribol. Int. 153, 106434 (2021). https://doi.org/10.1016/j.triboint.2020.106434

    Article  Google Scholar 

  10. Bin Hassan, M.F., Bonello, P.: A new modal-based approach for modelling the bump foil structure in the simultaneous solution of foil-air bearing rotor dynamic problems. J. Sound Vib. 396, 255–273 (2017). https://doi.org/10.1016/j.jsv.2017.02.028

    Article  Google Scholar 

  11. Li, C., Du, J., Zhu, J., Yao, Y.: Effects of structural parameters on the load carrying capacity of the multi-leaf gas foil journal bearing based on contact mechanics. Tribol. Int. 131, 318–331 (2019). https://doi.org/10.1016/j.triboint.2018.09.003

    Article  Google Scholar 

  12. Gu, Y., Ren, G., Zhou, M.: A fully coupled elastohydrodynamic model for static performance analysis of gas foil bearings. Tribol. Int. 147, 106297 (2020). https://doi.org/10.1016/j.triboint.2020.106297

    Article  Google Scholar 

  13. Gu, Y., Lan, X., Ren, G., Zhou, M.: An efficient three-dimensional foil structure model for bump-type gas foil bearings considering friction. Friction. 9(6), 1450–1463 (2021). https://doi.org/10.1007/s40544-020-0427-7

    Article  Google Scholar 

  14. Zhao, X., **ao, S.: A three-dimensional model of gas foil bearings and the effect of misalignment on the static performance of the first and second generation foil bearings. Tribol. Int. 156, 106821 (2021). https://doi.org/10.1016/j.triboint.2020.106821

    Article  Google Scholar 

  15. Li, J., Li, C., Du, J.: Investigations of the bump foil bearing with thick top foil based on contact mechanics. J. Tribol. 145(7), 074601 (2023). https://doi.org/10.1115/1.4056900

    Article  Google Scholar 

  16. Peng, J.-P., Carpino, M.: Calculation of stiffness and dam** coefficients for elastically supported gas foil bearings. J. Tribol. 115(1), 20–27 (1993). https://doi.org/10.1115/1.2920982

    Article  Google Scholar 

  17. Gu, Y., Ma, Y., Ren, G.: Stability and vibration characteristics of a rotor-gas foil bearings system with high-static-low-dynamic stiffness supports. J. Sound Vib. 397, 152–170 (2017). https://doi.org/10.1016/j.jsv.2017.02.047

    Article  Google Scholar 

  18. Bonello, P.: The extraction of Campbell diagrams from the dynamical system representation of a foil-air bearing rotor model. Mech. Syst. Signal Process. 129, 502–530 (2019). https://doi.org/10.1016/j.ymssp.2019.04.018

    Article  Google Scholar 

  19. Guan, H., Feng, K., Yu, K., Cao, Y., Wu, Y.: Nonlinear dynamic responses of a rigid rotor supported by active bump-type foil bearings. Nonlinear Dyn. 100, 2241–2264 (2020). https://doi.org/10.1007/s11071-020-05608-4

    Article  Google Scholar 

  20. von Osmanski, S., Larsen, J.S., Santos, I.F.: A fully coupled air foil bearing model considering friction—theory & experiment. J. Sound Vib. 400, 660–679 (2017). https://doi.org/10.1016/j.jsv.2017.04.008

    Article  Google Scholar 

  21. Lee, D.H., Kim, Y.C., Kim, K.W.: The dynamic performance analysis of foil journal bearings considering coulomb friction: rotating unbalance response. Tribol. Trans. 52(2), 146–156 (2009). https://doi.org/10.1080/10402000802192685

    Article  Google Scholar 

  22. Petrov, E.P., Ewins, D.J.: Generic friction models for time-domain vibration analysis of bladed disks. J. Turbomach. 26(4), 184–192 (2004). https://doi.org/10.1115/1.1644557

    Article  Google Scholar 

  23. Le Lez, S., Arghir, M., Frêne, J.: Nonlinear numerical prediction of gas foil bearing stability and unbalanced response. J. Eng. Gas Turbine Power. 131(1), 012503 (2009). https://doi.org/10.1115/1.2967481

    Article  Google Scholar 

  24. Zhao, X., **ao, S.: A finite element model for static performance analysis of gas foil bearings based on frictional contacts. Tribol. Trans. 64(2), 275–286 (2021). https://doi.org/10.1080/10402004.2020.1836294

    Article  Google Scholar 

  25. De Wit, C.C., Olsson, H., Astrom, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995). https://doi.org/10.1109/9.376053

    Article  MathSciNet  Google Scholar 

  26. Feng, K., Guo, Z.: Prediction of dynamic characteristics of a bump-type foil bearing structure with consideration of dynamic friction. Tribol. Trans. 57(2), 230–241 (2014). https://doi.org/10.1080/10402004.2013.864790

    Article  Google Scholar 

  27. Zhou, R., Gu, Y., Ren, G., Yu, S.: Modeling and stability characteristics of bump-type gas foil bearing rotor systems considering stick-slip friction. Int. J. Mech. Sci. 219, 107091 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107091

    Article  Google Scholar 

  28. von Osmanski, S., Larsen, J.S., Santos, I.F.: Multi-domain stability and modal analysis applied to gas foil bearings: three approaches. J. Sound Vib. 472, 115174 (2020). https://doi.org/10.1016/j.jsv.2020.115174

    Article  Google Scholar 

  29. Guo, Z., Feng, K., Liu, T., Lyu, P., Zhang, T.: Nonlinear dynamic analysis of rigid rotor supported by gas foil bearings: effects of gas film and foil structure on subsynchronous vibrations. Mech. Syst. Signal Process. 107, 549–566 (2018). https://doi.org/10.1016/j.ymssp.2018.02.005

    Article  Google Scholar 

  30. Li, C., Du, J., Li, J., Xu, Z.: Linear stability and nonlinear rotor responses of the gas foil bearing with multiple sliding beams. Proc. Inst. Mech. Eng. C. 237(22), 5247–5272 (2023). https://doi.org/10.1177/09544062231163717

    Article  Google Scholar 

  31. Bonello, P., Pham, H.: The efficient computationof the nonlinear dynamic response of a foil-air bearing rotor system. J. Sound Vib. 333(15), 3459–3478 (2014). https://doi.org/10.1016/j.jsv.2014.03.001

    Article  Google Scholar 

  32. Ghalayini, I., Bonello, P.: Nonlinear and linearised analyses of a generic rotor on single-pad foil-air bearings using Galerkin Reduction with different applied air film conditions. J. Sound Vib. 525, 116774 (2022). https://doi.org/10.1016/j.jsv.2022.116774

    Article  Google Scholar 

  33. Heinemann, S.T., Jensen, J.W., von Osmanski, S., Santos, I.F.: Numerical modelling of compliant foil structure in gas foil bearings: Comparison of four top foil models with and without radial injection. J. Sound Vib. 547, 117513 (2023). https://doi.org/10.1016/j.jsv.2022.117513

    Article  Google Scholar 

  34. Zhou, R., Gu, Y., Cui, J., Ren, G., Yu, S.: Nonlinear dynamic analysis of supercritical and subcritical hopf bifurcations in gas foil bearing-rotor systems. Nonlinear Dyn. 103(3), 2241–2256 (2021). https://doi.org/10.1007/s11071-021-06234-4

    Article  Google Scholar 

  35. Ruscitto, D., McCormick, J., Gray, S.: Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine I-journal bearing performance. NASA. CR–135368 (1978). https://doi.org/10.1007/s11071-021-06234-4

  36. Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer-Verlag, Berlin (2006)

    Book  Google Scholar 

  37. Mróz, Z., Stupkiewicz, S.: An anisotropic friction and wear model. Int. J. Solids Struct. 31(8), 1113–1113 (1994). https://doi.org/10.1016/0020-7683(94)90167-8

    Article  Google Scholar 

  38. Ireman, P., Klarbring, A., Strömberg, N.: A model of damage coupled to wear. Int. J. Solids Struct. 40, 2957–2974 (2003). https://doi.org/10.1016/S0020-7683(03)00121-5

    Article  MathSciNet  Google Scholar 

  39. Belytschko, T., Liu, W.K., Moran, B., Robert, J.: Nonlinear Finite Elements for Continua and Structures, 2nd edn. John Wiley, Hoboken (2000)

    Google Scholar 

  40. Strömberg, N., Johansson, L., Klarbring, A.: Derivation and analysis of a generalized standard model for contact, friction and wear. Int. J. Solids Struct. 33(13), 1817–1836 (1996). https://doi.org/10.1016/0020-7683(95)00140-9

    Article  MathSciNet  Google Scholar 

  41. D’Annibale, F., Casalotti, A., Luongo, A.: Stick-slip and wear phenomena at the contact interface between an elastic beam and a rigid substrate. Int. J. Solids Struct. 26(6), 843–860 (2021). https://doi.org/10.1177/1081286520971671

    Article  MathSciNet  Google Scholar 

  42. Le Lez, S., Arghir, M., Frêne, J.: Static and dynamic characterization of a bump-type foil bearing structure. J. Tribol. 129(1), 75–83 (2007). https://doi.org/10.1115/1.2390717

    Article  Google Scholar 

  43. Nielsen, B.B., Santos, I.F.: Transient and steady state behaviour of elasto–aerodynamic air foil bearings, considering bump foil compliance and top foil inertia and flexibility: a numerical investigation. Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 231(10), 1235–1253 (2017). https://doi.org/10.1177/1350650117689985

  44. San Andrés, L., Kim, T.H.: Analysis of gas foil bearings integrating FE top foil models. Tribol. Int. 42(1), 111–120 (2009). https://doi.org/10.1016/j.triboint.2008.05.003

    Article  Google Scholar 

  45. Boyaci, A., Lu, D., Schweizer, B.: Stability and bifurcation phenomena of Laval/Jeffcott rotors in semi-floating ring bearings. Nonlinear Dyn. 79, 1535–1561 (2015). https://doi.org/10.1007/s11071-014-1759-5

    Article  Google Scholar 

  46. Liu, W., Feng, K., Lyu, P.: Bifurcation and nonlinear dynamic behaviors of a metal mesh damped flexible pivot tilting pad gas bearing system. Nonlinear Dyn. 91(1), 655–677 (2018). https://doi.org/10.1007/s11071-017-3900-8

    Article  Google Scholar 

  47. Zhang, K., Feng, K., Li, W., Song, L.: Nonlinear dynamic analysis of a rotor-porous air journal bearing system with O-rings mounted. Nonlinear Dyn. 107, 559–586 (2022). https://doi.org/10.21203/rs.3.rs-485873/v1

Download references

Funding

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFB3402703); the National Natural Science Foundation of China (Grant No. U2141210), (Grant No. 52005126); the Shenzhen Science and Technology Innovation Council (Grant No. JCYJ20220818103200001), and the Stable Support Program for Shenzhen Higher Education Institutions from Shenzhen Science and Technology Innovation Council (Grant No. GXWD20220811151458003).

Author information

Authors and Affiliations

Authors

Contributions

XZ: conceptualization, methodology, software, validation, formal analysis, investigation, data curation, visualization, writing—original draft. CL: data curation, visualization, funding acquisition, supervision, writing–review and editing. JD: conceptualization, funding acquisition, supervision, writing—review and editing. YL: visualization, writing—review and editing.

Corresponding authors

Correspondence to Changlin Li or Jianjun Du.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. The transformation matrix, mass matrix and stiffness matrix of beam element

$$ {\mathbf{L}}_{e} = \left[ {\begin{array}{*{20}c} {{\text{cos}}\beta } & {{\text{sin}}\beta } & 0 & 0 & 0 & 0 \\ { - {\text{sin}}\beta } & {{\text{cos}}\beta } & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & {{\text{cos}}\beta } & {{\text{sin}}\beta } & 0 \\ 0 & 0 & 0 & { - {\text{sin}}\beta } & {{\text{cos}}\beta } & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} } \right] $$
(A.1)
$$ {\mathbf{m}}_{e} = \frac{{\rho AL_{e} }}{2}\left[ {\begin{array}{*{20}c} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],\,{\mathbf{k}}_{e} = \left[ {\begin{array}{*{20}c} {\frac{EA}{{L_{e} }}} & 0 & 0 & { - \frac{EA}{{L_{e} }}} & 0 & 0 \\ 0 & {\frac{12EI}{{L_{e}^{3} }}} & {\frac{6EI}{{L_{e}^{2} }}} & 0 & { - \frac{12EI}{{L_{e}^{3} }}} & {\frac{6EI}{{L_{e}^{2} }}} \\ 0 & {\frac{6EI}{{L_{e}^{2} }}} & {\frac{4EI}{{L_{e} }}} & 0 & { - \frac{6EI}{{L_{e}^{2} }}} & {\frac{2EI}{{L_{e} }}} \\ { - \frac{EA}{{L_{e} }}} & 0 & 0 & {\frac{EA}{{L_{e} }}} & 0 & 0 \\ 0 & { - \frac{12EI}{{L_{e}^{3} }}} & { - \frac{6EI}{{L_{e}^{2} }}} & 0 & {\frac{12EI}{{L_{e}^{3} }}} & { - \frac{6EI}{{L_{e}^{2} }}} \\ 0 & {\frac{6EI}{{L_{e}^{2} }}} & {\frac{2EI}{{L_{e} }}} & 0 & { - \frac{6EI}{{L_{e}^{2} }}} & {\frac{4EI}{{L_{e} }}} \\ \end{array} } \right] $$
(A.2)

where β is the included angle between the global coordinate system and the local coordinate system of the beam element, ρ is the density of the structure, A is cross-sectional area, E is the Young’s modulus and I is the moment of inertia.

Appendix B. The shape functions

$$ \begin{aligned} & N_{1} \left( \xi \right) = \frac{1}{2}\left( {1 - \xi } \right),\,N_{2} \left( \xi \right) = \frac{1}{2}\left( {1 + \xi } \right),\,N_{3} \left( \xi \right) = \frac{1}{4}\left( {1 - \xi } \right)^{2} \left( {2 + \xi } \right), \\ & N_{4} \left( \xi \right) = \frac{{L_{e} }}{8}\left( {1 - \xi } \right)^{2} \left( {1 + \xi } \right),\;N_{5} \left( \xi \right) = \frac{1}{4}\left( {1 + \xi } \right)^{2} \left( {2 - \xi } \right),\,N_{6} \left( \xi \right) = \frac{{L_{e} }}{8}\left( {1 + \xi } \right)^{2} \left( { - 1 + \xi } \right) \\ \end{aligned} $$
(B.1)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, C., Du, J. et al. A nonlinear model for dynamic performance analysis of gas foil bearing-rotor system considering frictional contacts. Nonlinear Dyn 112, 5975–5996 (2024). https://doi.org/10.1007/s11071-024-09309-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09309-0

Keywords

Navigation