Log in

Nonlinear behavior of quasi-zero stiffness nonlinear torsional vibration isolator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper researches the nonlinear behavior of a nonlinear torsional vibration isolator (NTVI) which is composed of flexible rod element and electromagnetic element. And the NTVI has a quasi-zero stiffness (QZS) characteristic. Firstly, a statics model of the QZS-NTVI and the parameter relationship between the nonlinear electromagnetic element and the flexible rod are established; the effects of geometric parameters on the QZS behavior and restoring torque are described. Then, the statics model approximated by the Taylor series is incorporated into the dynamic model of QZS-NTVI. The stability of the harmonic solution is analyzed, and the amplitude–frequency response and the torque transmissibility curves under different geometric parameters are derived according to the harmonic balance method. Furthermore, numerical analysis effort is performed to study the nonlinear behavior of QZS-NTVI. The results show that the QZS-NTVI exhibits super-harmonic and sub-harmonic resonances and undergoes the periodic and chaotic motions alternatively with the change in the excitation amplitude and the angular frequency. Finally, both the simulation and experimental efforts are performed to validate the statics model of the flexible rod and to study the vibration isolation performance and nonlinear behavior of QZS-NTVI. The results demonstrate that the vibration isolation performance of QZS-NTVI notably outperforms the linear system, as well as nonlinear behavior with frequency jump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Xu, J., Yang, X., Li, W., Zheng, J., Wang, Y., Fan, M.: Research on semi-active vibration isolation system based on electromagnetic spring. Mech. Ind. 21(101), 1–12 (2020)

    Google Scholar 

  2. Yan, B., Ma, H., Jian, B., et al.: Nonlinear dynamics analysis of a bi-state nonlinear vibration isolator with symmetric permanent magnets. Nonlinear Dyn. 97, 2499–2519 (2019)

    Article  Google Scholar 

  3. Sun, M., Song, G., Li, Y., Huang, Z.: Effect of negative stiffness mechanism in a vibration isolator with asymmetric and high-static-low-dynamic stiffness. Mech. Syst. Signal Process. 124, 388–407 (2019)

    Article  Google Scholar 

  4. Hundal, M.S.: Response of a base excited system with Coulomb and viscous friction. J. Sound Vib. 64(3), 371–378 (1979)

    Article  Google Scholar 

  5. **ong, Y.P., **ng, J.T., Price, W.G.: Interactive power flow characteristics of an integrated equipment nonlinear isolator travelling flexible ship excited by sea waves. J. Sound Vib. 287(1–2), 245–276 (2005)

    Article  Google Scholar 

  6. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)

    Article  Google Scholar 

  7. Peng, Z.K., Meng, G., Lang, Z.Q., et al.: Study of the effects of cubic nonlinear dam** on vibration isolations using harmonic balance method. Int. J. Non-Linear Mech. 47(10), 1073–1080 (2012)

    Article  Google Scholar 

  8. Guo, P.F., Lang, Z.Q., Peng, Z.K.: Analysis and design of the force and displacement transmissibility of nonlinear viscous damper based on vibration isolation systems. Nonlinear Dyn. 67(4), 2671–2687 (2012)

    Article  MathSciNet  Google Scholar 

  9. Peng, Z.K., Lang, Z.Q., Zhao, L., et al.: The force transmissibility of MDOF structures with a non-linear viscous dam** device. Int. J. Non-Linear Mech. 46(10), 1305–1314 (2011)

    Article  Google Scholar 

  10. Tang, B., Brennan, M.J.: A comparison of two nonlinear dam** mechanisms in a vibration isolator. J. Sound Vib. 332(3), 510–520 (2013)

    Article  Google Scholar 

  11. Sun, J.Y., Huang, X.C., Liu, X.T., et al.: Study on the force transmissibility of vibration isolators with geometric nonlinear dam**. Nonlinear Dyn. 74(4), 1103–1112 (2013)

    Article  Google Scholar 

  12. Ho, C., Lang, Z.-Q., Billings, S.A.: Design of vibration isolators by exploiting the beneficial effects of stiffness and dam** nonlinearities. J. Sound Vib. 333(12), 2489–2504 (2014)

    Article  Google Scholar 

  13. Huang, D.M., Xu, W., ** forces. Nonlinear Dyn. 81(1–2), 641–658 (2015)

    Article  Google Scholar 

  14. Cheng, C., Li, S.M., Wang, Y., et al.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear dam**. Nonlinear Dyn. 87(4), 2267–2279 (2017)

    Article  Google Scholar 

  15. Yan, B., Ma, H., Zhao, C., et al.: A vari-stiffness nonlinear isolator with magnetic effects: theoretical modeling and experimental verification. Int. J. Mech. Sci. 148, 745–755 (2018)

    Article  Google Scholar 

  16. Yan, B., Yu, N., Zhang, L., et al.: Scavenging vibrational energy with a novel bistable electromagnetic energy harvester. Smart Mater. Struct. 29(2), 025022 (2020)

    Article  Google Scholar 

  17. Yan, B., Ma, H., Zhang, L., et al.: Electromagnetic shunt dam** for shock isolation of nonlinear vibration isolators. J. Sound Vib. 479, 115370 (2020)

    Article  Google Scholar 

  18. Zhou, J., Wang, K., Xu, D., et al.: Vibration isolation in neonatal transport by using a quasi-zero-stiffness isolator. J. Vib. Control 24(15), 3278–3291 (2018)

    Article  Google Scholar 

  19. Lan, C.C., Yang, S.A., Wu, Y.S.: Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. J. Sound Vib. 333(20), 4843–4858 (2014)

    Article  Google Scholar 

  20. Zhou, J.X., Wang, K., Xu, D.L., et al.: A six degrees-of-freedom vibration isolation platform supported by a hexapod of quasi-zero-stiffness struts. J. Vib. Acoust. 139(3), 34502 (2017)

    Article  Google Scholar 

  21. Alabuzhev, P., Gritchin, A., Kim, L., et al.: Vibration Protecting and Measuring Systems with Quasi-Zero Stiffness. Hemisphere Publishing Corporation, USA (1989)

    Google Scholar 

  22. Hao, Z., Cao, Q., Wiercigroch, M.: Two-sided dam** constraint control strategy for high-performance vibration isolation and end-stop impact protection. Nonlinear Dyn. 86(4), 2129–2144 (2016)

    Article  MathSciNet  Google Scholar 

  23. Hao, Z., Cao, Q., Wiercigroch, M.: Nonlinear dynamics of the quasi -zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dyn. 87(2), 987–1014 (2017)

    Article  Google Scholar 

  24. Hao, Z., Cao, Q.: The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness. J. Sound Vib. 340, 61–79 (2015)

    Article  Google Scholar 

  25. Ding, H., Ji, J., Chen, L.: Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mech. Syst. Signal Process. 121, 675–688 (2019)

    Article  Google Scholar 

  26. Sadeghi, S.: Fluidic origami cellular structure with asymmetric quasi -zero stiffness for low-frequency vibration isolation. Smart Mater. Struct. 28, 065006 (2019)

    Article  Google Scholar 

  27. Yang, X., Zheng, J., Xu, J., et al.: Structural design and isolation characteristic analysis of new quasi-zero-stiffness. J. Vib. Eng. Technol. 8, 47–58 (2020)

    Article  Google Scholar 

  28. Zhou, J., Xu, D., Bishop, S.: A torsion quasi-zero stiffness vibration isolator. J. Sound Vib. 338, 121–133 (2015)

    Article  Google Scholar 

  29. Zheng, Y., Zhang, X., Luo, Y., Zhang, Y., **e, S.: Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness. Mech. Syst. Signal Process. 100, 135–151 (2018)

    Article  Google Scholar 

  30. Xu, J., Yang, X., Li, W., Zheng, J., Wang, Y., Fan, M., Zhou, W., Lu, Y.: Design of quasi-zero stiffness joint actuator and research on vibration isolation performance. J. Sound Vib. 479, 115367 (2020)

    Article  Google Scholar 

  31. Xu, J., Zhou, W., **g, J.: An electromagnetic torsion active vibration absorber based on the FxLMS algorithm. J. Sound Vib. 524, 116734 (2022)

    Article  Google Scholar 

  32. Kim, S.M., Hong, J.R., Yoo, H.H.: Analysis and design of a torsional vibration isolator for rotating shafts. J. Mech. Sci. Technol. 33(10), 4627–4634 (2019)

    Article  Google Scholar 

  33. Zhang, Q., **a, S., Xu, D., et al.: A torsion–translational vibration isolator with quasi-zero stiffness. Nonlinear Dyn. 99, 1467–1488 (2020)

    Article  Google Scholar 

  34. Yan, G., Zou, H., Wang, S., Zhao, L., Wu, Z., Zhang, W.: Bio-inspired vibration isolation: methodology and design. ASME Appl. Mech. Rev. 73(2), 020801 (2021)

    Article  Google Scholar 

  35. Junshu, H., Lingshuai, M., **ggong, S.: Design and characteristics analysis of a nonlinear isolator using a curved-mount-spring-roller mechanism as negative stiffness element. Math. Probl. Eng. 2018, 1359461 (2018)

    Article  MathSciNet  Google Scholar 

  36. Mo, J., Zhang, W., Chen, X.: Asymptotic behavior for a class of nonlinear reaction diffusion system with jump layer. Adv. Math. 36(5), 631–636 (2007)

    MathSciNet  Google Scholar 

  37. Liu, C., Yu, K.: A high-static–low-dynamic-stiffness vibration isolator with the auxiliary system. Nonlinear Dyn. 94, 1549–1567 (2018)

    Article  Google Scholar 

  38. Ravindra, B., Mallik, A.: Performance of non-linear vibration isolators under harmonic excitation. J. Sound Vib. 170(3), 325–337 (1994)

    Article  Google Scholar 

  39. Jazar, G.N., Houim, R., Narimani, A., et al.: Frequency response and jump avoidance in a nonlinear passive engine mount. J. Vib. Control 12(11), 1205–1237 (2006)

    Article  Google Scholar 

  40. Deshpande, S., Mehta, S., Jazar, G.N.: Optimization of secondary suspension of piecewise linear vibration isolation systems. Int. J. Mech. Sci. 48(4), 341–377 (2006)

    Article  Google Scholar 

  41. Narimani, A., Golnaraghi, M., Jazar, G.N.: Frequency response of a piecewise linear vibration isolator. J. Vib. Control 10(12), 1775–1794 (2004)

    Article  Google Scholar 

  42. Narimani, A., Golnaraghi, M.F., Jazar, G.N.: Sensitivity analysis of the frequency response of a piecewise linear system in a frequency island. J. Vib. Control 10(2), 175–198 (2004)

    Article  Google Scholar 

  43. Gao, X., Chen, Q.: Nonlinear analysis, design and vibration isolation for a bilinear system with time-delayed cubic velocity feedback. J. Sound Vib. 333(6), 1562–1576 (2014)

    Article  Google Scholar 

  44. Yang, J., **ong, Y., **ng, J.: Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. J. Sound Vib. 332(1), 167–183 (2013)

    Article  Google Scholar 

  45. Harvey, P.S., Wiebe, R., Gavin, H.P.: On the chaotic response of a nonlinear rolling isolation system. Physica D 256–257, 36–42 (2013)

    Article  MathSciNet  Google Scholar 

  46. Stabile, A., Aglietti, G.S., Richardson, G., et al.: A 2-collinear-DoF strut with embedded negative-resistance electromagnetic shunt dampers for spacecraft micro-vibration. Smart Mater. Struct. 26(4), 045031 (2017)

    Article  Google Scholar 

  47. Zhou, S., Jean-Mistral, C., Chesné, S.: Electromagnetic shunt dam** with negative impedances: optimization and analysis. J. Sound Vib. 445, 188–203 (2019)

    Article  Google Scholar 

  48. Ma, H., Yan, B., Zhang, L., et al.: On the design of nonlinear dam** with electromagnetic shunt dam**. Int. J. Mech. Sci. 175, 105513 (2020)

    Article  Google Scholar 

  49. Yan, B., Ma, H., Yu, N., et al.: Theoretical modeling and experimental analysis of nonlinear electromagnetic shunt dam**. J. Sound Vib. 471, 115184 (2020)

    Article  Google Scholar 

  50. Yan, B.; Mlaa, H.; Zhang, L, et al.: A bistable vibration isolator with nonlinear electromagnetic shunt dam**. Mech. Syst. Signal Process. 136, 106504 (2020)

  51. Yan, B., Ma, H., Zheng, W., et al.: Nonlinear electromagnetic shunt dam** for nonlinear vibration isolators. IEEE/ASME Trans. Mechatron. 24(4), 1851–1860 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by the National Natural Science Foundation of China (12072190).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiawei Xu or Jian** **g.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., **g, J. Nonlinear behavior of quasi-zero stiffness nonlinear torsional vibration isolator. Nonlinear Dyn 112, 2545–2568 (2024). https://doi.org/10.1007/s11071-023-09176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09176-1

Keywords

Navigation