Log in

Ultra-broad bandgap induced by hybrid hardening and softening nonlinearity in metastructure

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Metamaterials are artificial microstructured media that exhibit unique effective material properties and can be tailored to achieve negative properties that inhibit the propagation of acoustic or elastic waves. However, the effectiveness of linear metamaterials (LMs) based on resonance mechanisms is limited to a narrow frequency band. To overcome this limitation, nonlinear metamaterials (NLMs) have been investigated for enlarged bandwidth and wave phenomena beyond the linear systems. This paper presents a new mechanism for achieving an ultra-broad bandgap using a chain of triplets of resonators, based on the combination of hardening-plus-softening nonlinearity. The paper begins by investigating the bandgap and transmission characteristics of NLMs with different arrangements of single-hardening or single-softening nonlinear spring element. Explicit expressions for the nonlinear dispersion relations have been derived through a perturbation method. The paper then explores the combination of hardening-plus-softening nonlinearity to achieve an ultra-broad bandgap, which is more than twice as wide as the bandgap in the corresponding LM. The transmission characteristics are investigated analytically and validated numerically, providing evidence for the existence and accuracy of the predicted ultra-broad bandgap. The paper also examines nonlinear phenomena such as the dual wavevector and inflection point of transmissions in detail. Finally, the physical origin of the ultra-broad bandgap is elaborated through the nonlinear frequency response of a unit cell solved using a high-order harmonic balance method. The findings of this study are expected to provide a new strategy for broadening vibration suppression and offer new insight into the behavior of nonlinear periodic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig.10
Fig.11

Similar content being viewed by others

Data availability

Relevant data can be made available upon reasonable request.

Abbreviations

\({A}_{1}^{0}\) :

Amplitude of incident wave

\({A}_{b}\) :

Excitation amplitude applied at the first unit cell in numerical analysis

\(a\) :

Lattice constant

\({c}_{1}\) :

Secular terms

c.c :

Complex conjugate

\(i\) :

Imaginary unit \(\sqrt{-1}\)

\({k}_{1}\), \({k}_{2}\),\({k}_{3}\) :

Linear spring coefficient of unit cells from the external to the internal

LM:

Linear metamaterial

\({m}_{1}\), \({m}_{2}\),\({m}_{3}\) :

Discrete mass of unit cells from the external to the internal

n :

Location number of unit cell

NLM:

Nonlinear metamaterial

\(q\) :

The wave number

\({T}_{l}\) :

Transmission for linear system

\({T}_{nl}\) :

Transmission for nonlinear system

\({u}_{1}^{n}\), \({u}_{2}^{n}\),\({u}_{3}^{n}\) :

Displacement of \({m}_{1}\),\({m}_{2}\), \({m}_{3}\) For the nth unit cells

\({{u}_{j}^{n}}^{\left(0\right)}\) :

The zero-order term of the perturbation expansion of the displacement

\({{u}_{j}^{n}}^{\left(1\right)}\) :

The first-order term of the perturbation expansion of the displacement

\({x}_{i}\) :

The deformation of the corresponding spring

\({\gamma }_{2}\),\({\gamma }_{3}\) :

Non-dimensional nonlinear stiffness

\({\delta }_{2}\),\({\delta }_{3}\) :

Non-dimensional stiffness

\(\varepsilon \) :

Perturbation parameter

\({\theta }_{2}\),\({\theta }_{3}\) :

Non-dimensional mass

\(\kappa \) :

Dimensionless wave number

\(\lambda \) :

Coefficient of

\(\tau \) :

Non-dimensional time

\({\omega }_{0}\) :

Natural frequency

\({\Gamma }_{2}\),\({\Gamma }_{3}\) :

Nonlinear spring coefficients

\(\Omega \) :

Non-dimensional frequency

\({\Omega }_{0}\) :

Zero-order term of the perturbation expansion of the non-dimensional frequency

\({\Omega }_{1}\) :

First-order term of the perturbation expansion of the non-dimensional frequency

\({\Omega }_{L}^{1}\) :

Lower edge frequency of the first bandgap

\({\Omega }_{U}^{1}\) :

Upper edge frequency of the first bandgap

\({\Omega }_{L}^{2}\) :

Lower edge frequency of second bandgap

\({\Omega }_{U}^{2}\) :

Upper edge frequency of second bandgap

\({\Omega }_{c}\) :

Cut-off frequency

References

  1. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000). https://doi.org/10.1126/science.289.5485.1734

    Article  Google Scholar 

  2. Liu, Z., Chan, C.T., Sheng, P.: Analytic model of phononic crystals with local resonances. Phys. Rev. B–Condens. Matter Mater. Phys. 71, 1–8 (2005). https://doi.org/10.1103/PhysRevB.71.014103

    Article  Google Scholar 

  3. Liu, X.N., Hu, G.K., Huang, G.L., Sun, C.T.: An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl. Phys. Lett. 98, 2–4 (2011). https://doi.org/10.1063/1.3597651

    Article  Google Scholar 

  4. Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat. Commun. 5, 1–8 (2014). https://doi.org/10.1038/ncomms6510

    Article  Google Scholar 

  5. Scheibner, C., Souslov, A., Banerjee, D., Surówka, P., Irvine, W.T.M., Vitelli, V.: Odd elasticity. Nat. Phys. 16, 475–480 (2020). https://doi.org/10.1038/s41567-020-0795-y

    Article  Google Scholar 

  6. Chen, Y., Li, X., Scheibner, C., Vitelli, V., Huang, G.: Realization of active metamaterials with odd micropolar elasticity. Nat. Commun. 12, 1–12 (2021). https://doi.org/10.1038/s41467-021-26034-z

    Article  Google Scholar 

  7. Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: A chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333, 2759–2773 (2014). https://doi.org/10.1016/j.jsv.2014.01.009

    Article  Google Scholar 

  8. Matlack, K.H., Bauhofer, A., Krödel, S., Palermo, A., Daraio, C.: Composite 3D-printed metastructures for lowfrequency and broadband vibration absorption. Proc. Natl. Acad. Sci. USA 113, 8386–8390 (2016). https://doi.org/10.1073/pnas.1600171113

    Article  Google Scholar 

  9. Cai, C., Zhou, J., Wu, L., Wang, K., Xu, D., Ouyang, H.: Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Compos. Struct. 236, 111862 (2020). https://doi.org/10.1016/j.compstruct.2020.111862

    Article  Google Scholar 

  10. Zhang, M., Yang, J., Zhu, R.: Origami-based bistable metastructures for low-frequency vibration control. J. Appl. Mech., Transact. ASME 88, 051009 (2021). https://doi.org/10.1115/1.4049953

    Article  Google Scholar 

  11. Park, C.S., Shin, Y.C., Jo, S.H., Yoon, H., Choi, W., Youn, B.D., Kim, M.: Two-dimensional octagonal phononic crystals for highly dense piezoelectric energy harvesting. Nano Energy 57, 327–337 (2019). https://doi.org/10.1016/j.nanoen.2018.12.026

    Article  Google Scholar 

  12. Lu, Z.Q., Zhao, L., Ding, H., Chen, L.Q.: A dual-functional metamaterial for integrated vibration isolation and energy harvesting. J. Sound Vib. 509, 11625 (2021). https://doi.org/10.1016/j.jsv.2021.116251

    Article  Google Scholar 

  13. Lee, G., Lee, D., Park, J., Jang, Y., Kim, M., Rho, J.: Piezoelectric energy harvesting using mechanical metamaterials and phononic crystals. Commun. Phys. 5, 1–16 (2022). https://doi.org/10.1038/s42005-022-00869-4

    Article  Google Scholar 

  14. Tan, K.T., Huang, H.H., Sun, C.T.: Blast-wave impact mitigation using negative effective mass density concept of elastic metamaterials. Int. J. Impact Eng 64, 20–29 (2014). https://doi.org/10.1016/j.ijimpeng.2013.09.003

    Article  Google Scholar 

  15. Hu, J., Yu, T.X., Yin, S., Xu, J.: Low-speed impact mitigation of recoverable DNA-inspired double helical metamaterials. Int. J. Mech. Sci. 161, 105050 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105050

    Article  Google Scholar 

  16. Oudich, M., Assouar, M.B., Hou, Z.: Propagation of acoustic waves and waveguiding in a two-dimensional locally resonant phononic crystal plate. Appl. Phys. Lett. 97, 65–68 (2010). https://doi.org/10.1063/1.3513218

    Article  Google Scholar 

  17. Li, G.H., Wang, Y.Z., Wang, Y.S.: Active control on switchable waveguide of elastic wave metamaterials with the 3D printing technology. Sci. Rep. 9, 1–8 (2019). https://doi.org/10.1038/s41598-019-52705-5

    Article  Google Scholar 

  18. Tan, K.T., Huang, H.H., Sun, C.T.: Optimizing the band gap of effective mass negativity in acoustic metamaterials. Appl. Phys. Lett. 101, 241902 (2012). https://doi.org/10.1063/1.4770370

    Article  Google Scholar 

  19. Hu, G., Tang, L., Das, R., Gao, S., Liu, H.: Acoustic metamaterials with coupled local resonators for broadband vibration suppression. AIP Adv. 7, 025211 (2017). https://doi.org/10.1063/1.4977559

    Article  Google Scholar 

  20. Abdeljaber, O., Avci, O., Inman, D.J.: Optimization of chiral lattice based metastructures for broadband vibration suppression using genetic algorithms. J. Sound Vib. 369, 50–62 (2016). https://doi.org/10.1016/j.jsv.2015.11.048

    Article  Google Scholar 

  21. Yeh, S.L., Harne, R.L.: Origins of broadband vibration attenuation empowered by optimized viscoelastic metamaterial inclusions. J. Sound Vib. 458, 218–237 (2019). https://doi.org/10.1016/j.jsv.2019.06.018

    Article  Google Scholar 

  22. Wang, Z., Zhang, Q., Zhang, K., Hu, G.: Tunable digital metamaterial for broadband vibration isolation at low frequency. Adv. Mater. 28, 9857–9861 (2016). https://doi.org/10.1002/adma.201604009

    Article  Google Scholar 

  23. Yang, X.W., Lee, J.S., Kim, Y.Y.: Effective mass density based topology optimization of locally resonant acoustic metamaterials for bandgap maximization. J. Sound Vib. 383, 89–107 (2016). https://doi.org/10.1016/j.jsv.2016.07.022

    Article  Google Scholar 

  24. Yi, K., Matten, G., Ouisse, M., Sadoulet-Reboul, E., Collet, M., Chevallier, G.: Programmable metamaterials with digital synthetic impedance circuits for vibration control. Smart Mater. Struct. 29, 035005 (2020). https://doi.org/10.1088/1361-665X/ab6693

    Article  Google Scholar 

  25. Yi, K., Collet, M.: Broadening low-frequency bandgaps in locally resonant piezoelectric metamaterials by negative capacitance. J. Sound Vib. 493, 115837 (2021). https://doi.org/10.1016/j.jsv.2020.115837

    Article  Google Scholar 

  26. Wu, K., Hu, H., Wang, L.: Optimization of a type of elastic metamaterial for broadband wave suppression. Proc. Royal Soc. A Math. Phys. Eng. Sci. 477, 20210337 (2021). https://doi.org/10.1098/rspa.2021.0337

    Article  MathSciNet  Google Scholar 

  27. Wu, K., Hu, H., Wang, L., Gao, Y.: Parametric optimization of an aperiodic metastructure based on genetic algorithm. Int. J. Mech. Sci. 214, 106878 (2022). https://doi.org/10.1016/j.ijmecsci.2021.106878

    Article  Google Scholar 

  28. Xu, X., Barnhart, M.V., Li, X., Chen, Y., Huang, G.: Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators. J. Sound Vib. 442, 237–248 (2019). https://doi.org/10.1016/j.jsv.2018.10.065

    Article  Google Scholar 

  29. Zhao, P., Zhang, K., Zhao, C., Deng, Z.: Multi-resonator coupled metamaterials for broadband vibration suppression. Appl. Math. Mech. 42, 53–64 (2021). https://doi.org/10.1007/s10483-021-2684-8

    Article  MathSciNet  Google Scholar 

  30. Wei, W., Ren, S., Chronopoulos, D., Meng, H.: Optimization of connection architectures and mass distributions for metamaterials with multiple resonators. J. Appl. Phys. 129, 165101 (2021). https://doi.org/10.1063/5.0047391

    Article  Google Scholar 

  31. Hu, G., Austin, A.C.M., Sorokin, V., Tang, L.: Metamaterial beam with graded local resonators for broadband vibration suppression. Mech. Syst. Signal Process. 146, 106982 (2021). https://doi.org/10.1016/j.ymssp.2020.106982

    Article  Google Scholar 

  32. Celli, P., Yousefzadeh, B., Daraio, C., Gonella, S.: Bandgap widening by disorder in rainbow metamaterials. Appl. Phys. Lett. 114, 091903 (2019). https://doi.org/10.1063/1.5081916

    Article  Google Scholar 

  33. Li, C., Jiang, T., He, Q., Peng, Z.: Stiffness-mass-coding metamaterial with broadband tunability for low-frequency vibration isolation. J. Sound Vib. 489, 115685 (2020). https://doi.org/10.1016/j.jsv.2020.115685

    Article  Google Scholar 

  34. Yi, K., Liu, Z., Zhu, R.: Multi-resonant metamaterials based on self-sensing piezoelectric patches and digital circuits for broadband isolation of elastic wave transmission. Smart Mater. Struct. 31, 015042 (2022). https://doi.org/10.1088/1361-665X/ac3b1f

    Article  Google Scholar 

  35. Ma, G., Sheng, P.: Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2, e1501595 (2016). https://doi.org/10.1126/sciadv.1501595

    Article  Google Scholar 

  36. Kovacic I., Brennan M. J.: The Duffing equation: nonlinear oscillators and their behaviour, John Wiley & Sons, (2011). https://doi.org/10.1002/9780470977859.

  37. Holmes, P.J., Moon, F.C.: Strange attractors and chaos in nonlinear mechanics. J Appl. Mech. Transact. ASME 50, 1021–1032 (1983). https://doi.org/10.1115/1.3167185

    Article  MathSciNet  Google Scholar 

  38. Szemplińska-Stupnicka, W.: Secondary resonances and approximate models of routes to chaotic motion in non-linear oscillators. J. Sound Vib. 113, 155–172 (1987). https://doi.org/10.1016/S0022-460X(87)81348-2

    Article  MATH  Google Scholar 

  39. Nayfeh, A.H., Sanchez, N.E.: Bifurcations in a forced softening Duffing oscillator. Int. J. Non-Linear Mech. 24, 483–497 (1989). https://doi.org/10.1016/0020-7462(89)90014-0

    Article  MathSciNet  MATH  Google Scholar 

  40. Balachandran, B., Nayfeh, A.H.: Nonlinear motions of beam-mass structure. Nonlinear Dyn. 1, 39–61 (1990). https://doi.org/10.1007/BF01857584

    Article  Google Scholar 

  41. **g, X.J., Vakakis, A.F.: Exploring nonlinear benefits in engineering. Mech. Syst. Signal Process. 125, 1–3 (2019). https://doi.org/10.1016/j.ymssp.2019.01.059

    Article  Google Scholar 

  42. Kovacic I., Lenci S.: IUTAM symposium on exploiting nonlinear dynamics for engineering systems, Springer, (2019). https://doi.org/10.1007/978-3-030-23692-2.

  43. Cabaret, J., Tournat, V., Béquin, P.: Amplitude-dependent phononic processes in a diatomic granular chain in the weakly nonlinear regime. Phys. Rev. E–Stat. Nonlinear Soft Matter Phys. 86, 1–10 (2012). https://doi.org/10.1103/PhysRevE.86.041305

    Article  Google Scholar 

  44. Manktelow, K.L., Leamy, M.J., Ruzzene, M.: Analysis and experimental estimation of nonlinear dispersion in a periodic string. J. Vib. Acoust., Transact ASME 136, 1–8 (2014). https://doi.org/10.1115/1.4027137

    Article  MATH  Google Scholar 

  45. Chakraborty, G., Mallik, A.K.: Dynamics of a weakly non-linear periodic chain. Int. J. Non-Linear Mech. 36, 375–389 (2001). https://doi.org/10.1016/S0020-7462(00)00024-X

    Article  MATH  Google Scholar 

  46. Narisetti, R.K., Leamy, M.J., Ruzzene, M.: A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. Transact. ASME 132, 0310011–03100111 (2010). https://doi.org/10.1115/1.4000775

    Article  Google Scholar 

  47. Konarski, S.G., Haberman, M.R., Hamilton, M.F.: Frequency-dependent behavior of media containing pre-strained nonlinear inclusions: application to nonlinear acoustic metamaterials. J. Acoust. Soc. Am. 144, 3022–3035 (2018). https://doi.org/10.1121/1.5078529

    Article  Google Scholar 

  48. Meaud, J.: Nonlinear wave propagation and dynamic reconfiguration in two-dimensional lattices with bistable elements. J. Sound Vib. 473, 115239 (2020). https://doi.org/10.1016/j.jsv.2020.115239

    Article  Google Scholar 

  49. Fang, X., Wen, J., Bonello, B., Yin, J., Yu, D.: Wave propagation in one-dimensional nonlinear acoustic metamaterials. New J. Phys. 19, 053007 (2017). https://doi.org/10.1088/1367-2630/aa6d49

    Article  MATH  Google Scholar 

  50. Luo, B., Gao, S., Liu, J., Mao, Y., Li, Y., Liu, X.: Non-reciprocal wave propagation in one-dimensional nonlinear periodic structures. AIP Adv. 8, 015113 (2018). https://doi.org/10.1063/1.5010990

    Article  Google Scholar 

  51. Li, Z.-N., Wang, Y.-Z., Wang, Y.-S.: Tunable mechanical diode of nonlinear elastic metamaterials induced by imperfect interface. Pro Royal Soc. A. 477, 20200357 (2021). https://doi.org/10.1098/rspa.2020.0357

    Article  MathSciNet  Google Scholar 

  52. Fraternali, F., Senatore, L., Daraio, C.: Solitary waves on tensegrity lattices. J. Mech. Phys. Solids 60, 1137–1144 (2012). https://doi.org/10.1016/j.jmps.2012.02.007

    Article  Google Scholar 

  53. Fraternali, F., Carpentieri, G., Amendola, A., Skelton, R.E., Nesterenko, V.F.: Multiscale tunability of solitary wave dynamics in tensegrity metamaterials. Appl. Phys. Lett. 105, 201903 (2014). https://doi.org/10.1063/1.4902071

    Article  Google Scholar 

  54. Manktelow, K., Leamy, M.J., Ruzzene, M.: Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dyn. 63, 193–203 (2011). https://doi.org/10.1007/s11071-010-9796-1

    Article  MathSciNet  MATH  Google Scholar 

  55. Lazarov, B.S., Jensen, J.S.: Low-frequency band gaps in chains with attached non-linear oscillators. Int. J. Non-Linear Mech. 42, 1186–1193 (2007). https://doi.org/10.1016/j.ijnonlinmec.2007.09.007

    Article  Google Scholar 

  56. Lepidi, M., Bacigalupo, A.: Wave propagation properties of one-dimensional acoustic metamaterials with nonlinear diatomic microstructure. Nonlinear Dyn. 98, 2711–2735 (2019). https://doi.org/10.1007/s11071-019-05032-3

    Article  MATH  Google Scholar 

  57. Fortunati, A., Bacigalupo, A., Lepidi, M., Arena, A., Lacarbonara, W.: Nonlinear wave propagation in locally dissipative metamaterials via Hamiltonian perturbation approach. Nonlinear Dyn. 108, 765–787 (2022). https://doi.org/10.1007/s11071-022-07199-8

    Article  Google Scholar 

  58. Xu, X., Barnhart, M.V., Fang, X., Wen, J., Chen, Y., Huang, G.: A nonlinear dissipative elastic metamaterial for broadband wave mitigation. Int. J. Mech. Sci. 164, 105159 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105159

    Article  Google Scholar 

  59. Bae, M.H., Oh, J.H.: Nonlinear elastic metamaterial for tunable bandgap at quasi-static frequency. Mech. Syst. Signal Process. 170, 108832 (2022). https://doi.org/10.1016/j.ymssp.2022.108832

    Article  Google Scholar 

  60. **a, Y., Ruzzene, M., Erturk, A.: Dramatic bandwidth enhancement in nonlinear metastructures via bistable attachments. Appl. Phys. Lett. 114, 093501 (2019). https://doi.org/10.1063/1.5066329

    Article  Google Scholar 

  61. **a, Y., Ruzzene, M., Erturk, A.: Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam. Nonlinear Dyn. 102, 1285–1296 (2020). https://doi.org/10.1007/s11071-020-06008-4

    Article  Google Scholar 

  62. Silva, P.B., Leamy, M.J., Geers, M.G.D., Kouznetsova, V.G.: Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance. Phys. Rev. E 99, 1–14 (2019). https://doi.org/10.1103/PhysRevE.99.063003

    Article  Google Scholar 

  63. Zega, V., Silva, P.B., Geers, M.G.D., Kouznetsova, V.G.: Experimental proof of emergent subharmonic attenuation zones in a nonlinear locally resonant metamaterial. Sci. Rep. 10, 1–11 (2020). https://doi.org/10.1038/s41598-020-68894-3

    Article  Google Scholar 

  64. Fang, X., Wen, J., Bonello, B., Yin, J., Yu, D.: Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nat. Commun. 8, 1–11 (2017). https://doi.org/10.1038/s41467-017-00671-9

    Article  Google Scholar 

  65. Wu, K., Hu, H., Wang, L.: Nonlinear elastic waves in a chain type of metastructure: theoretical analysis and parametric optimization. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08413-x

    Article  Google Scholar 

  66. Shen, Y., Lacarbonara, W.: Nonlinear dispersion properties of metamaterial beams hosting nonlinear resonators and stop band optimization. Mech. Syst. Signal Process. 187, 109920 (2023). https://doi.org/10.1016/j.ymssp.2022.109920

    Article  Google Scholar 

  67. Shen, Y., Lacarbonara, W.: Nonlinearity enhanced wave bandgaps in metamaterial honeycombs embedding spider web-like resonators. J Sound Vib. 562, 117821 (2023). https://doi.org/10.1016/j.jsv.2023.117821

    Article  Google Scholar 

  68. Fang, X., Wen, J., Benisty, H., Yu, D.: Ultrabroad acoustical limiting in nonlinear metamaterials due to adaptive-broadening band-gap effect. Phys. Rev. B 101, 1–10 (2020). https://doi.org/10.1103/PhysRevB.101.104304

    Article  Google Scholar 

  69. Gong, C., Fang, X., Cheng, L.: Band degeneration and evolution in nonlinear triatomic metamaterials. Nonlinear Dyn. 2, 1–16 (2022). https://doi.org/10.1007/s11071-022-07860-2

    Article  Google Scholar 

  70. Chen, Y.Y., Barnhart, M.V., Chen, J.K., Hu, G.K., Sun, C.T., Huang, G.L.: Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale. Compos. Struct. 136, 358–371 (2016). https://doi.org/10.1016/j.compstruct.2015.09.048

    Article  Google Scholar 

  71. Bukhari, M., Barry, O.: Spectro-spatial analyses of a nonlinear metamaterial with multiple nonlinear local resonators. Nonlinear Dyn. 99, 1539–1560 (2020). https://doi.org/10.1007/s11071-019-05373-z

    Article  Google Scholar 

  72. Krack M., Gross J.: Harmonic balance for nonlinear vibration problems, Springer, 2019. https://doi.org/10.1007/978-3-030-14023-6.

  73. Malatkar, P., Nayfeh, A.H.: Steady-State dynamics of a linear structure weakly coupled to an essentially nonlinear oscillator. Nonlinear Dyn. 47, 167–179 (2007). https://doi.org/10.1007/s11071-006-9066-4

    Article  MATH  Google Scholar 

  74. Zhang, Y., Kong, X., Yue, C., ** and combined stiffness. Nonlinear Dyn. 105, 167–190 (2021). https://doi.org/10.1007/s11071-021-06615-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China under Grant No. 2021YFE0110900 and in part by the National Natural Science Foundation of China (NSFC) under Grants No. U22B2078, 11991033 and 12202052. The involvement of Ivana Kovacic was supported by the Ministry of Science, Innovation and Technological Development of the Republic of Serbia via the NOLIMAST project.

Funding

The authors list their funding sources in the Acknowledgements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivana Kovacic or Rui Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhou, H., Yi, K. et al. Ultra-broad bandgap induced by hybrid hardening and softening nonlinearity in metastructure. Nonlinear Dyn 111, 17687–17707 (2023). https://doi.org/10.1007/s11071-023-08808-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08808-w

Keywords

Navigation