Log in

Elastic wave propagation in weakly nonlinear media and metamaterials: a review of recent developments

  • Feature Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper we review recent progress on the analysis, experimental exploration, and application of elastic wave propagation in weakly nonlinear media and metamaterials. We provide a detailed technical discussion overviewing two broad areas of active research: (1) discrete nonlinear periodic systems and metamaterials, and (2) continuous nonlinear systems with a focus on nonlinear guided waves. The specific intent is to introduce the reader to asymptotic analysis methods currently being employed in the field of study, to highlight their results to date, and to motivate follow-on studies. Where appropriate, we include details on experimental explorations and envisioned applications, both of which have received relatively sparse attention to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Kaajakari, V., Mattila, T., Oja, A., Seppa, H.: Nonlinear limits for single-crystal silicon microresonators. J. Microelectromech. Syst. 13(5), 715 (2004)

    Google Scholar 

  2. Prochazka, I., Panek, P.: Nonlinear effects in the time measurement device based on surface acoustic wave filter excitation. Rev. Sci. Instrum. 80(7), 076102 (2009)

    Google Scholar 

  3. Kodaira, R., Omori, T., Hashimoto, K.Y., Kyoya, H., Nakagawa, R.: Considerations on nonlinearity measurement with high signal-to-noise ratio for RF surface and bulk acoustic wave devices. Jpn. J. Appl. Phys. 54(7S1), 07HD14 (2015)

    Google Scholar 

  4. Tocchio, A., Comi, C., Langfelder, G., Corigliano, A., Longoni, A.: Enhancing the linear range of MEMS resonators for sensing applications. IEEE Sens. J. 11(12), 3202 (2011)

    Google Scholar 

  5. McGee, O., Jiang, H., Qian, F., Jia, Z., Wang, L., Meng, H., Chronopoulos, D., Chen, Y., Zuo, L.: 3D printed architected hollow sphere foams with low-frequency phononic band gaps. Addit. Manuf. 30, 100842 (2019)

    Google Scholar 

  6. Fabro, A.T., Meng, H., Chronopoulos, D.: Uncertainties in the attenuation performance of a multi-frequency metastructure from additive manufacturing. Mech. Syst. Signal Process. 138, 106557 (2020)

    Google Scholar 

  7. Yao, Z., Zhao, R., Zega, V., Corigliano, A.: A metaplate for complete 3D vibration isolation. Eur. J. Mech. A Solids 84, 104016 (2020)

    MATH  Google Scholar 

  8. Zega, V., Silva, P.B., Geers, M.G., Kouznetsova, V.G.: Experimental proof of emergent subharmonic attenuation zones in a nonlinear locally resonant metamaterial. Sci. Rep. 10(1), 1 (2020)

    Google Scholar 

  9. Deng, B., Wang, P., He, Q., Tournat, V., Bertoldi, K.: Metamaterials with amplitude gaps for elastic solitons. Nature Commun. 9(1), 1 (2018)

    Google Scholar 

  10. Jiao, W., Gonella, S.: Nonlinear harmonic generation in two-dimensional lattices of repulsive magnets. Phys. Rev. E 103(1), 012213 (2021)

    Google Scholar 

  11. Kittel, C.: Introduction to Solid State Physics (1976)

  12. Hussein, M., Khajehtourian, R.: Nonlinear Bloch waves and balance between hardening and softening dispersion. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2217), 20180173 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Silva, P., Leamy, M., Geers, M., Kouznetsova, V.: Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance. Phys. Rev. E 99(6), 063003 (2019)

    Google Scholar 

  14. Khajehtourian, R., Hussein, M.I.: Dispersion characteristics of a nonlinear elastic metamaterial. Aip Adv. 4(12), 124308 (2014)

    Google Scholar 

  15. Fermi, E., Pasta, P., Ulam, S., Tsingou, M.: Studies of the Nonlinear Problems. Tech. rep., Los Alamos Scientific Lab., N. Mex. (1955)

  16. Liu, Z., Zhang, X., Mao, Y., Zhu, Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289(5485), 1734 (2000)

    Google Scholar 

  17. Lazarov, B.S., Jensen, J.S.: Low-frequency band gaps in chains with attached non-linear oscillators. Int. J. Non-Linear Mech. 42(10), 1186 (2007)

    Google Scholar 

  18. Manimala, J.M., Sun, C.: Numerical investigation of amplitude-dependent dynamic response in acoustic metamaterials with nonlinear oscillators. J. Acoust. Soc. Am. 139(6), 3365 (2016)

    Google Scholar 

  19. Jiao, W., Gonella, S.: Doubly nonlinear waveguides with self-switching functionality selection capabilities. Phys. Rev. E 99(4), 042206 (2019)

    Google Scholar 

  20. Bukhari, M., Barry, O.: Spectro-spatial analyses of a nonlinear metamaterial with multiple nonlinear local resonators. Nonlinear Dyn. 99(2), 1539 (2020)

    Google Scholar 

  21. Ganesh, R., Gonella, S.: From modal mixing to tunable functional switches in nonlinear phononic crystals. Phys. Rev. Lett. 114(5), 054302 (2015)

    Google Scholar 

  22. Dubus, B., Swinteck, N., Muralidharan, K., Vasseur, J., Deymier, P.A.: Nonlinear phonon modes in second-order anharmonic coupled monoatomic chains. J. Vib. Acoust. 138(4), 041016 (2016)

    Google Scholar 

  23. Narisetti, R., Ruzzene, M., Leamy, M.: A perturbation approach for analyzing dispersion and group velocities in two-dimensional nonlinear periodic lattices. J. Vib. Acoust. 133(6), 061020 (2011)

    Google Scholar 

  24. Manktelow, K.L., Leamy, M.J., Ruzzene, M.: Weakly nonlinear wave interactions in multi-degree of freedom periodic structures. Wave Motion 51(6), 886 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Fronk, M.D., Leamy, M.J.: Direction-dependent invariant waveforms and stability in two-dimensional, weakly nonlinear lattices. J. Sound Vib. 447, 137 (2019)

    Google Scholar 

  26. Brillouin, L.: Sur les tensions de radiation. Ann. Phys. 10(4), 528 (1925). https://doi.org/10.1051/anphys/192510040528

    Article  MATH  Google Scholar 

  27. Manktelow, K., Leamy, M.J., Ruzzene, M.: Multiple scales analysis of wave–wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dyn. 63(1), 193 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Jiao, W., Gonella, S.: Wavenumber-space band clip** in nonlinear periodic structures. ar**v:2009.14357 (2020)

  29. Fronk, M.D., Leamy, M.J.: Higher-order dispersion, stability, and waveform invariance in nonlinear monoatomic and diatomic systems. J. Vib. Acoust. 139(5), 051003 (2017)

    Google Scholar 

  30. Narisetti, R.K., Leamy, M.J., Ruzzene, M.: A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. 132(3), 031001 (2010)

    Google Scholar 

  31. Sánchez-Morcillo, V.J., Pérez-Arjona, I., Romero-García, V., Tournat, V., Gusev, V.: Second-harmonic generation for dispersive elastic waves in a discrete granular chain. Phys. Rev. E 88(4), 043203 (2013)

    Google Scholar 

  32. Narisetti, R.K.: Wave propagation in nonlinear periodic structures, Wave propagation in nonlinear periodic structures. Ph.D. thesis, Georgia Institute of Technology (2010)

  33. Narisetti, R.K., Ruzzene, M., Leamy, M.J.: Study of wave propagation in strongly nonlinear periodic lattices using a harmonic balance approach. Wave Motion 49(2), 394 (2012)

    MathSciNet  MATH  Google Scholar 

  34. He, J.H.: Modified Lindstedt–Poincare methods for some strongly non-linear oscillations: part I: expansion of a constant. Int. J. Non-Linear Mech. 37(2), 309 (2002)

    MATH  Google Scholar 

  35. He, J.H.: Modified Lindstedt–Poincare methods for some strongly non-linear oscillations: part II: a new transformation. Int. J. Non-Linear Mech. 37(2), 315 (2002)

    MATH  Google Scholar 

  36. Sepehri, S., Mashhadi, M.M., Fakhrabadi, M.M.S.: Wave propagation in nonlinear monoatomic chains with linear and quadratic dam**. Nonlinear Dyn. 108(1), 457 (2022)

    Google Scholar 

  37. Panigrahi, S.R., Feeny, B.F., Diaz, A.R.: Second-order perturbation analysis of low-amplitude traveling waves in a periodic chain with quadratic and cubic nonlinearity. Wave Motion 69, 1 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Chakraborty, G., Mallik, A.: Dynamics of a weakly non-linear periodic chain. Int. J. Non-Linear Mech. 36(2), 375 (2001)

    MATH  Google Scholar 

  39. Settimi, V., Lepidi, M., Bacigalupo, A.: Nonlinear dispersion properties of one-dimensional mechanical metamaterials with inertia amplification. Int. J. Mech. Sci. 201, 106461 (2021)

    Google Scholar 

  40. Bae, M.H., Oh, J.H.: Nonlinear elastic metamaterial for tunable bandgap at quasi-static frequency. Mech. Syst. Signal Process. 170, 108832 (2022)

    Google Scholar 

  41. He, C., Lim, K.M., Zhang, F., Jiang, J.H.: Dual-tuning mechanism for elastic wave transmission in a triatomic lattice with string stiffening. Wave Motion 112, 102951 (2022)

    MathSciNet  MATH  Google Scholar 

  42. Abedinnasab, M.H., Hussein, M.I.: Wave dispersion under finite deformation. Wave Motion 50(3), 374 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Abedin-Nasab, M.H., Bastawrous, M.V., Hussein, M.I.: Explicit dispersion relation for strongly nonlinear flexural waves using the homotopy analysis method. Nonlinear Dyn. 99(1), 737 (2020)

    MATH  Google Scholar 

  44. Khajehtourian, R., Hussein, M.I.: Time-independent harmonics dispersion relation for time-evolving nonlinear waves. Sci. Adv. 7(50), eabl3695 (2021)

    Google Scholar 

  45. Packo, P., Uhl, T., Staszewski, W.J., Leamy, M.J.: Amplitude-dependent Lamb wave dispersion in nonlinear plates. J. Acoust. Soc. Am. 140(2), 1319 (2016). https://doi.org/10.1121/1.4961489

    Article  Google Scholar 

  46. Malvern, L.E.M.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Inc., Hoboken (1969)

    Google Scholar 

  47. Fang, L., Leamy, M.J.: Perturbation analysis of nonlinear evanescent waves in a one-dimensional monatomic chain. Phys. Rev. E 105(1), 014203 (2022)

    MathSciNet  Google Scholar 

  48. Cabaret, J., Tournat, V., Béquin, P.: Amplitude-dependent phononic processes in a diatomic granular chain in the weakly nonlinear regime. Phys. Rev. E 86(4), 041305 (2012)

    Google Scholar 

  49. Biwa, S., Ishii, Y.: Second-harmonic generation in an infinite layered structure with nonlinear spring-type interfaces. Wave Motion 63, 55 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Frandsen, N.M., Jensen, J.S.: Modal interaction and higher harmonic generation in a weakly nonlinear, periodic mass-spring chain. Wave Motion 68, 149 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Jiao, W., Gonella, S.: Intermodal and subwavelength energy trap** in nonlinear metamaterial waveguides. Phys. Rev. Appl. 10(2), 024006 (2018)

    Google Scholar 

  52. Wallen, S.P., Boechler, N.: Shear to longitudinal mode conversion via second harmonic generation in a two-dimensional microscale granular crystal. Wave Motion 68, 22 (2017)

    MathSciNet  MATH  Google Scholar 

  53. Tournat, V., Gusev, V.E., Castagnède, B.: Self-demodulation of elastic waves in a one-dimensional granular chain. Phys. Rev. E 70, 056603 (2004). https://doi.org/10.1103/PhysRevE.70.056603

    Article  Google Scholar 

  54. Fronk, M.D., Leamy, M.J.: Isolated frequencies at which nonlinear materials behave linearly. Phys. Rev. E 100(5), 051002 (2019)

    Google Scholar 

  55. Fronk, M.D., Leamy, M.J.: Internally resonant wave energy exchange in weakly nonlinear lattices and metamaterials. Phys. Rev. E 100(3), 032213 (2019)

    Google Scholar 

  56. Remoissenet, M.: Waves Called Solitons: Concepts and Experiments. Springer, Berlin (2013)

    MATH  Google Scholar 

  57. Panigrahi, S.R., Feeny, B.F., Diaz, A.R.: Wave-wave interactions in a periodic chain with quadratic nonlinearity. Wave Motion 69, 65 (2017)

    MathSciNet  MATH  Google Scholar 

  58. Lepidi, M., Bacigalupo, A.: Wave propagation properties of one-dimensional acoustic metamaterials with nonlinear diatomic microstructure. Nonlinear Dyn. 98(4), 2711 (2019)

    MATH  Google Scholar 

  59. Kochmann, D.M., Bertoldi, K.: Exploiting microstructural instabilities in solids and structures: from metamaterials to structural transitions. Appl. Mech. Rev. 69(5), 050801 (2017)

    Google Scholar 

  60. Bilal, O.R., Foehr, A., Daraio, C.: Bistable metamaterial for switching and cascading elastic vibrations. Proc. Natl. Acad. Sci. 114(18), 4603 (2017)

    Google Scholar 

  61. Kamrava, S., Mousanezhad, D., Ebrahimi, H., Ghosh, R., Vaziri, A.: Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Sci. Rep. 7(1), 1 (2017)

    Google Scholar 

  62. Katz, S., Givli, S.: Solitary waves in a bistable lattice. Extreme Mech. Lett. 22, 106 (2018)

    Google Scholar 

  63. **a, Y., Ruzzene, M., Erturk, A.: Dramatic bandwidth enhancement in nonlinear metastructures via bistable attachments. Appl. Phys. Lett. 114(9), 093501 (2019)

    Google Scholar 

  64. Nadkarni, N., Arrieta, A.F., Chong, C., Kochmann, D.M., Daraio, C.: Unidirectional transition waves in bistable lattices. Phys. Rev. Lett. 116(24), 244501 (2016)

    Google Scholar 

  65. Hwang, M., Arrieta, A.F.: Input-independent energy harvesting in bistable lattices from transition waves. Sci. Rep. 8(1), 1 (2018)

    Google Scholar 

  66. Meaud, J.: Nonlinear wave propagation and dynamic reconfiguration in two-dimensional lattices with bistable elements. J. Sound Vib. 473, 115239 (2020)

    Google Scholar 

  67. Huang, G., Hu, B.: Asymmetric gap soliton modes in diatomic lattices with cubic and quartic nonlinearity. Phys. Rev. B 57(10), 5746 (1998)

    Google Scholar 

  68. Kartashov, Y.V., Malomed, B.A., Vysloukh, V.A., Torner, L.: Two-dimensional solitons in nonlinear lattices. Opt. lett. 34(6), 770 (2009)

    Google Scholar 

  69. Borovkova, O.V., Kartashov, Y.V., Torner, L.: Stabilization of two-dimensional solitons in cubic-saturable nonlinear lattices. Phys. Rev. A 81(6), 063806 (2010)

    Google Scholar 

  70. Flach, S., Gorbach, A.V.: Discrete breathers-advances in theory and applications. Phys. Rep. 467(1–3), 1 (2008)

    MATH  Google Scholar 

  71. Gorbach, A.V., Johansson, M.: Discrete gap breathers in a diatomic Klein-Gordon chain: stability and mobility. Phys. Rev. E 67(6), 066608 (2003)

    Google Scholar 

  72. Kastner, M.: Dimension dependent energy thresholds for discrete breathers. Nonlinearity 17(5), 1923 (2004)

    MathSciNet  MATH  Google Scholar 

  73. Butt, I.A., Wattis, J.A.: Discrete breathers in a two-dimensional Fermi–Pasta–Ulam lattice. J. Phys. A Math. General 39(18), 4955 (2006)

    MathSciNet  MATH  Google Scholar 

  74. Manktelow, K.L., Leamy, M.J., Ruzzene, M.: Analysis and experimental estimation of nonlinear dispersion in a periodic string. J. Vib. Acoust. 136(3), 031016 (2014)

    Google Scholar 

  75. Porter, M.A., Daraio, C., Herbold, E.B., Szelengowicz, I., Kevrekidis, P.: Highly nonlinear solitary waves in periodic dimer granular chains. Phys. Rev. E 77(1), 015601 (2008)

    MATH  Google Scholar 

  76. Hasan, M.A., Cho, S., Remick, K., Vakakis, A.F., McFarland, D.M., Kriven, W.M.: Experimental study of nonlinear acoustic bands and propagating breathers in ordered granular media embedded in matrix. Granular Matter 17, 49 (2015)

    Google Scholar 

  77. Lydon, J., Theocharis, G., Daraio, C.: Nonlinear resonances and energy transfer in finite granular chains. Phys. Rev. E 91(2), 023208 (2015)

    Google Scholar 

  78. Bao, B., Lallart, M., Guyomar, D.: Manipulating elastic waves through piezoelectric metamaterial with nonlinear electrical switched Dual-connected topologies. Int. J. Mech. Sci. 172, 105423 (2020)

    Google Scholar 

  79. Jian, Y., Hu, G., Tang, L., Tang, W., Abdi, M., Aw, K.C.: Analytical and experimental study of a metamaterial beam with grading piezoelectric transducers for vibration attenuation band widening. Eng. Struct. 275, 115091 (2023)

    Google Scholar 

  80. Bukhari, M., Barry, O.: Substantial frequency conversion at long-wavelength limit in metamaterial with weakly nonlinear local electromechanical resonators: Analytical, computational, and experimental study. Int. J. Non-Linear Mech. 147, 104226 (2022)

    Google Scholar 

  81. Matlack, K.H., Bauhofer, A., Krödel, S., Palermo, A., Daraio, C.: Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proc. Natl. Acad. Sci. 113(30), 8386 (2016)

    Google Scholar 

  82. Arretche, I., Matlack, K.H.: Experimental testing of vibration mitigation in 3D-printed architected metastructures. J. Appl. Mech. 86(11), 111008 (2019)

    Google Scholar 

  83. Mork, N., Fronk, M.D., Sinclair, M.B., Leamy, M.J.: Nonlinear hierarchical unit cell for passive, amplitude-dependent filtering of acoustic waves. Extreme Mech. Lett. 57, 101915 (2022)

    Google Scholar 

  84. Zangeneh-Nejad, F., Sounas, D.L., Alù, A., Fleury, R.: Analogue computing with metamaterials. Nature Rev. Mater. 6(3), 207 (2021)

    Google Scholar 

  85. Kim, S., Baesens, C., MacKay, R.: Phonon scattering by localized equilibria of nonlinear nearest-neighbor chains. Phys. Rev. E 56(5), R4955 (1997)

    Google Scholar 

  86. Swinteck, N.Z., Muralidharan, K., Deymier, P.A.: Phonon scattering in one-dimensional anharmonic crystals and superlattices: analytical and numerical study. J. Vib. Acoust. 135(4), 041016 (2013)

    Google Scholar 

  87. Chang, C., Zhao, L.D.: Anharmoncity and low thermal conductivity in thermoelectrics. Mater. Today Phys. 4, 50 (2018)

    Google Scholar 

  88. Teixeira, F.L.: Time-domain finite-difference and finite-element methods for Maxwell equations in complex media. IEEE Trans. Antennas Propag. 56(8), 2150 (2008)

    MathSciNet  MATH  Google Scholar 

  89. Dissanayake, C.M., Premaratne, M., Rukhlenko, I.D., Agrawal, G.P.: FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides. Opt. Express 18(20), 21427 (2010)

    Google Scholar 

  90. Manktelow, K., Leamy, M.J., Ruzzene, M.: Comparison of asymptotic and transfer matrix approaches for evaluating intensity-dependent dispersion in nonlinear photonic and phononic crystals. Wave Motion 50(3), 494 (2013)

    MathSciNet  MATH  Google Scholar 

  91. Duan, W.S.: Nonlinear waves propagating in the electrical transmission line. EPL (Europhys. Lett.) 66(2), 192 (2004)

    Google Scholar 

  92. Yemélé, D., Kenmogné, F.: Compact envelope dark solitary wave in a discrete nonlinear electrical transmission line. Phys. Lett. A 373(42), 3801 (2009)

    MATH  Google Scholar 

  93. Motcheyo, A.T., Tchameu, J.T., Fewo, S.I., Tchawoua, C., Kofané, T.C.: Chameleon’s behavior of modulable nonlinear electrical transmission line. Commun. Nonlinear Sci. Numer. Simul. 53, 22 (2017)

    MathSciNet  MATH  Google Scholar 

  94. Ustinov, A.B., Drozdovskii, A.V., Kalinikos, B.A.: Multifunctional nonlinear magnonic devices for microwave signal processing. Appl. Phys. Lett. 96(14), 142513 (2010)

    Google Scholar 

  95. Sadovnikov, A., Beginin, E., Morozova, M., Sharaevskii, Y.P., Grishin, S., Sheshukova, S., Nikitov, S.: Nonlinear spin wave coupling in adjacent magnonic crystals. Appl. Phys. Lett. 109(4), 042407 (2016)

    Google Scholar 

  96. Richardson, D., Kalinikos, B.A., Carr, L.D., Wu, M.: Spontaneous exact spin-wave fractals in magnonic crystals. Phys. Rev. Lett. 121(10), 107204 (2018)

    Google Scholar 

  97. Thurston, R.N., Shapiro, M.J.: Interpretation of ultrasonic experiments on finite-amplitude waves. J. Acoust. Soc. Am. 41(4B), 1112 (1967). https://doi.org/10.1121/1.1910443

    Article  Google Scholar 

  98. Cantrell, J.H.: Acoustic-radiation stress in solids. I. Theory. Phys. Rev. B 30, 3214 (1984). https://doi.org/10.1103/PhysRevB.30.3214

    Article  Google Scholar 

  99. Qu, J., Jacobs, L.J., Nagy, P.B.: On the acoustic-radiation-induced strain and stress in elastic solids with quadratic nonlinearity (L). J. Acoust. Soc. Am. 129(6), 3449 (2011). https://doi.org/10.1121/1.3583501

    Article  Google Scholar 

  100. Nagy, P.B., Qu, J., Jacobs, L.J.: Finite-size effects on the quasistatic displacement pulse in a solid specimen with quadratic nonlinearity. J. Acoust. Soc. Am. 134(3), 1760 (2013). https://doi.org/10.1121/1.4817840

    Article  Google Scholar 

  101. Cveticanin, L.: Vibrations of the nonlinear oscillator with quadratic nonlinearity. Phys. A Stat. Mech. Its Appl. 341, 123 (2004)

    MathSciNet  Google Scholar 

  102. Brojan, F.K.M., Videnic, T.: Large deflections of nonlinearly elastic non-prismatic cantilever beams made from materials obeying the generalized Ludwick constitutive law. Meccanica 44, 733 (2009)

    MathSciNet  MATH  Google Scholar 

  103. Qu, J., Nagy, P.B., Jacobs, L.J.: Pulse propagation in an elastic medium with quadratic nonlinearity (L). J. Acoust. Soc. Am. 131(3), 1827 (2012). https://doi.org/10.1121/1.3681922

    Article  Google Scholar 

  104. Yost, W.T., Cantrell, J.H.: Acoustic-radiation stress in solids. II. Experiment. Phys. Rev. B 30, 3221 (1984). https://doi.org/10.1103/PhysRevB.30.3221

    Article  Google Scholar 

  105. Ghiron, E.F.: Anomalie nella propagazione di onde acustiche di grande ampiezza. Alta frequenza 4(10), 530 (1935)

    Google Scholar 

  106. Rayleigh, L.: On the momentum and pressure of gaseous vibrations, and on the connection with the virial theorem. Philos. Mag. 10, 364 (1905)

    MATH  Google Scholar 

  107. Fubini-Ghiron, E.: La tension de radiation acoustique et les ondes de grande amplitude. Revue d’Acoustique 6, 118–127 (1937)

    Google Scholar 

  108. Westervelt, P.J.: The mean pressure and velocity in a plane acoustic wave in a gas. J. Acoust. Soc. Am. 22(3), 319 (1950). https://doi.org/10.1121/1.1906606

    Article  MathSciNet  Google Scholar 

  109. Blackstock, D.T.: Propagation of plane sound waves of finite amplitude in nondissipative fluids. J. Acoust. Soc. Am. 34(1), 9 (1962). https://doi.org/10.1121/1.1909033

    Article  MathSciNet  Google Scholar 

  110. Beyer, R.T.: Radiation pressure-the history of a mislabeled tensor. J. Acoust. Soc. Am. 63(4), 1025 (1978). https://doi.org/10.1121/1.381833

    Article  Google Scholar 

  111. Hasegawa, T., Kido, T., Iizuka, T., Matsuoka, C.: A general theory of Rayleigh and Langevin radiation pressures. Acoust. Sci. Technol. 21(3), 145 (2000). https://doi.org/10.1250/ast.21.145

    Article  Google Scholar 

  112. Sarvazyan, A.P., Rudenko, O.V., Nyborg, W.L.: Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med. Biol. 36(9), P1379 (2010)

    Google Scholar 

  113. Cantrell, J.H., Yost, W.T.: Acoustic nonlinearity in dispersive solids. In: Review of Progress in Quantitative Nondestructive Evaluation, vol. 10B, pp. 1805–1811 (1991)

  114. Deng, M.: Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys. 94(6), 4152 (2003). https://doi.org/10.1063/1.1601312

    Article  Google Scholar 

  115. Muller, M.F., Kim, J.Y., Qu, J., Jacobs, L.J.: Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am. 127(4), 2141 (2010). https://doi.org/10.1121/1.3294714

    Article  Google Scholar 

  116. Packo, P., Radecki, R., Leamy, M.J., Uhl, T., Staszewski, W.J.: Modeling and numerical simulations in nonlinear acoustics used for damage detection, pp. 103–137. Springer, Cham (2019)

    Google Scholar 

  117. Landau, E.M.L.L.D.: Theory of Elasticity. Pergamon Press, Oxford (1970)

    Google Scholar 

  118. Destrade, R.W.O.M.: On the third- and fourth-order constants of incompressible isotropic elasticity. J. Acoust. Soc. Am. 128, 3334 (2010)

    Google Scholar 

  119. de Lima, W., Hamilton, M.: Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265(4), 819 (2003). https://doi.org/10.1016/S0022-460X(02)01260-9

    Article  Google Scholar 

  120. Viktorov, I.: Rayleigh and Lamb Waves: Physical Theory and Applications. Plenum Press, New York (1970)

    Google Scholar 

  121. Rose, J.: Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  122. Solie, B.A.A.L.P.: Elastic waves in free anisotropic plates. J. Acoust. Soc. Am. 54, 50 (1973)

    Google Scholar 

  123. Kijanka, P., Staszewski, W.J., Packo, P.: Generalised semi-analytical method for excitability curves calculation and numerical modal amplitude analysis for Lamb waves. Struct. Control Health Monitor. 25(7), e2172 (2018)

    Google Scholar 

  124. Nayfeh, D.M.A.H.: Nonlinear Oscilations. Wiley, London (1979)

    Google Scholar 

Download references

Acknowledgements

P.P. acknowledges support from the National Science Centre in Poland through Grant No. 2018/31/B/ST8/00753 and partial support through ’Excellence initiative—research university’ program for AGH University of Science and Technology. M.J.L. acknowledges support from the U.S. National Science Foundation under award numbers 1741565 and 1929849.

Funding

The authors list their funding sources in the Acknowledgements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Leamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fronk, M.D., Fang, L., Packo, P. et al. Elastic wave propagation in weakly nonlinear media and metamaterials: a review of recent developments. Nonlinear Dyn 111, 10709–10741 (2023). https://doi.org/10.1007/s11071-023-08399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08399-6

Keywords

Navigation