Log in

Stabilities and interaction dynamics for flat-top bright soliton solutions of a generalized Gross-Pitaevskii(GGP(n,n)) equation with Gaussian-harmonic-radial PT-symmetric potential

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The PT-symmetric Gross-Pitaevskii(GP) equation is presented, which is an important and useful model in Bose-Einstein condensation(BEC). The generalized Gross-Pitaevskii(GGP(n,n)) equation has several kinds of potentials including Gaussian, harmonic and radial potentials, and it is a generalization GP equation.Then, some physically relevant solutions are derived, a kind of flat-top soliton solution is considered for the nonautonomous GGP(n,n) equation with Gaussian-harmonic-radial PT-symmetric potential. Especially, some novel flat-top bright(FTB) solitons are found, these FTB solitons can exist stably with Gaussian-harmonic-radial PT-symmetric potentials in a broad range. We investigate the interaction dynamics of between the FTB soliton and FTB soliton, the FTB soliton and bright soliton through addressing numerically. Intriguingly, the FTB solitons can admit some novel features and are different from these usual features of solitons, which have not a effected by other external waves. These results are useful for the possibility of some relative experiments and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availibility

The data that support the findings of this article are available from the corresponding author, upon reasonable request.

References

  1. Pitaevskii, L.P., Strinari, S.: Bose-Einstein Condensation, Oxford University Press, Oxford, (2003); Emergent Nonlinear Phenomena in Bose-Einstein Condensation: Theory and Experiment, In: Kevrekidis, P.G., Frantzeskakis, D. J. and Carretero-Gonzalez (eds.) , R.: Vol. 45, Springer, New York, (2008)

  2. Mio, K., et al.: Modified nonlinear schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J. Phys. Soc. Jpn. 41, 265–271 (1976)

    MATH  Google Scholar 

  3. Trulsen, K., Dysthe, K.B.: A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion. 24, 281–289 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Yomosa, S.: Soliton excitations in deoxyribonucleic acid (DNA) double helices. Phys. Rev. A. 27, 2120 (1983)

    MathSciNet  Google Scholar 

  5. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP. 34, 61–68 (1972)

    MathSciNet  Google Scholar 

  6. Konotop, V.V.: Soliton on a disordered lattice. Phys. Rev. E. 47, 1423 (1993)

    Google Scholar 

  7. Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502 (2000)

    Google Scholar 

  8. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Comment on “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients.”. Phys. Rev. Lett 92, 199401 (2004)

  9. Chen, H.H., Liu, C.S.: Solitons in nonuniform media. Phys. Rev. Lett. 37, 693 (1976)

    MathSciNet  Google Scholar 

  10. Wazwaz, A.M., Albalawi, W., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik 255, 168673 (2022)

    Google Scholar 

  11. Wazwaz, A.M.: New (3 + 1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891–897 (2021)

    Google Scholar 

  12. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Google Scholar 

  13. Zhang, R.F., Bilige, S.D.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

  14. Shen, J.L., Wu, X.Y.: Periodic-soliton and periodic-type solutions of the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation by using BNNM. Nonlinear Dyn. 106, 831–840 (2021)

    Google Scholar 

  15. Zhang, R.F., Bilige, S.D., Temuer, C.L.: Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex. 34, 122–139 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Kumar, S., Dhiman, S.K., Baleanu, D., et al.: Lie symmetries, closed-form solutions, and various dynamical profiles of solitons for the variable coefficient (2+1)-dimensional KP equations. Symmetry 14(3), 597 (2022)

    Google Scholar 

  17. Qiao, J.M., Zhang, R.F., Yue, R.X., Rezazadeh, H., Seadawy, A.R.: Three types of periodic solutions of new (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation via bilinear neural network method. Math. Methods Appl. Sci. (2022). https://doi.org/10.1002/mma.8131

    Article  MathSciNet  Google Scholar 

  18. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos, Solitons Fractals 154, 111692 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Zhang, R.F., Bilige, S.D., Liu, J.G., Li, M.C.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2021)

    Google Scholar 

  20. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Google Scholar 

  21. Zhang, R.F., Li, M.C., Albishari, M., et al.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comp. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Crasovan, L.C., Malomed, B.A., Mihalache, D.: Erupting, flat-top, and composite spiral solitons in the two-dimensional Ginzburg-Landau equation. Phys. Lett. A. 289, 59–65 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Rizza, C., Ciattoni, A., Palange, E.: Two-peaked and flat-top perfect bright solitons in nonlinear metamaterials with epsilon near zero. Phys. Rev. A. 83, 053805 (2011)

    Google Scholar 

  24. Rosenau, P., Oron, A.: Flatons: Flat-top solitons in extended Gardner-like equations. Commun. Nonlinear. Sci. Numer. Simulat. 91, 105442 (2020)

    MathSciNet  MATH  Google Scholar 

  25. He, J.R., Li, H.M.: Analytical solitary-wave solutions of the generalized nonautonomous cubic-quintic nonlinear Schrödinger equation with different external potentials. Phys. Rev. E. 83, 066607 (2011)

    Google Scholar 

  26. Belmonte-Beitia, J., Perez-Garcia, V.M., Brazhnyi, V.: Solitary waves in coupled nonlinear Schrödinger equations with spatially inhomogeneous nonlinearities. Commun. Nonlin. Sci. Numer. Simulat. 16, 158–172 (2011)

    MATH  Google Scholar 

  27. Belmonte-Beitia, J., Calvo, G.F.: Exact solutions for the quintic nonlinear Schrödinger equation with time and space modulated nonlinearities and potentials. Phys. Lett. A. 373, 448–453 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Hasegawa, A., Kodama, Y.: Solitons in Optical Communications, Oxford University Press, New York, (1995); Mollenauer, L. F. and Gordon, J. P.: Solitons in Optical Fibers (Academic, Boston, 2006); Agrawal, G. P.: Nonlinear Fiber Optics, 3rd ed, Academic, San Diego, (2001)

  29. Pitaevskii, L.P., Stringari, S.: Bose-Einstein Condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  30. Brazhnyi, V.A., Konotop, V.V.: Theory of nonlinear matter waves in optical lattices. Mod. Phys. Lett. B. 18, 627–651 (2004)

    MATH  Google Scholar 

  31. Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-Gonzalez, R.: Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment. Springer, New York (2008)

    MATH  Google Scholar 

  32. Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 405 (2011)

    Google Scholar 

  33. Ponomarenko, S.A., Agrawal, G.P.: Do soliton like self-similar waves exist in nonlinear optical media? Phys. Rev. Lett. 97, 013901 (2006)

    Google Scholar 

  34. Kivshar, Y., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, New York (2003)

    Google Scholar 

  35. Strecker, K.E., Partridge, G.B., Truscott, A.G., Hulet, R.G.: Bright matter wave solitons in Bose-Einstein condensates. New J. Phys. 5, 73 (2003)

    Google Scholar 

  36. Liang, Z.X., Zhang, Z.D., Liu, W.M.: Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. Phys. Rev. Lett. 94, 050402 (2005)

    Google Scholar 

  37. Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Torres, P.J.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98, 064102 (2007)

    Google Scholar 

  38. Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Konotop, V.V.: Localized nonlinear waves in systems with time-and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)

    Google Scholar 

  39. Bludov, Y.V., Yan, Z.Y., Konotop, V.V.: Dynamics of inhomogeneous condensates in contact with a surface. Phys. Rev. A. 81, 063610 (2010)

    Google Scholar 

  40. Yan, Z.Y., Konotop, V.V.: Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities. Phys. Rev. E. 80, 036607 (2009)

    Google Scholar 

  41. Yan, Z.Y., Hang, C.: Analytical three-dimensional bright solitons and soliton pairs in Bose-Einstein condensates with time-space modulation. Phys. Rev. A 80, 063626 (2009)

    Google Scholar 

  42. Pérez-García, V.M., Torres, P.J., Konotop, V.V.: Similarity transformations for nonlinear Schrödinger equations with time-dependent coefficients. Physica D. 221, 31–36 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Sinha, D., Ghosh, P.K.: Symmetries and exact solutions of a class of nonlocal nonlinear Schrödinger equations with self-induced parity-time-symmetric potential. Phys. Rev. E. 91, 042908 (2015)

    MathSciNet  Google Scholar 

  44. Wang, D.S., Wei, X.Q.: Integrability and exact solutions of a two-component Korteweg-de Vries system. Appl. Math. Lett. 51, 60–67 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Wang, D.S., Yin, Y.B.: Symmetry analysis and reductions of the two-dimensional generalized Benney system via geometric approach. Compu. Math. Appl. 71, 748–757 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Dai, C.Q., Wang, Y.Y.: Controllable combined Peregrine soliton and Kuznetsov-Ma soliton in PT-symmetric nonlinear couplers with gain and loss. Nonlinear Dyn. 80, 715–721 (2015)

    MathSciNet  Google Scholar 

  47. Dai, C.Q., Wang, Y.Y.: Spatiotemporal localizations in 3+1-dimensional PT-symmetric and strongly nonlocal nonlinear media. Nonlinear Dyn. 83, 2453–2549 (2016)

    MathSciNet  Google Scholar 

  48. Yu, F.J.: Nonautonomous rogue waves and “catch’’ dynamics for the combined Hirota-LPD equation with variable coefficients. Commun. Nonlinear. Sci. Numer. Simulat. 34, 142–163 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Li, L., Liu, Y.Y., Yu, F.J.: Some reverse space(RS) rational solutions for the nonlocal coupled nonlinear Schrödinger equations on the plane wave backgrounds. Appl. Math. Lett. 129, 107976 (2022)

    MATH  Google Scholar 

  50. Chen, J.C., Li, Z.B.: Three-dimensional bright-dark soliton, bright soliton pairs, and rogue wave of coupled nonlinear schrödinger equation with time-space modulation. Naturforsch 67a, 483–490 (2012)

  51. **g, J.C., Li, B.: Exact analytical solutions for the (2+ 1)-dimensional generalized variable-coefficients gross-pitaevskii equation. Chin. J. Phys. 50, 413 (2012)

    Google Scholar 

  52. Yu, F.J., Fan, R.: Nonstandard bilinearization and interaction phenomenon for PT-symmetric coupled nonlocal nonlinear Schrödinger equations. Appl. Math. Lett. 103, 106209 (2020)

    MathSciNet  MATH  Google Scholar 

  53. Yu, F.J., Liu, C.P., Li, L.: Broken and unbroken solutions and dynamic behaviors for the mixed local-nonlocal Schrödinger equation. Appl. Math. Lett. 117, 107075 (2021)

    MATH  Google Scholar 

  54. Li, L., Yu, F.J., Duan, C.N.: A generalized nonlocal Gross-Pitaevskii (NGP) equation with an arbitrary time-dependent linear potential. Appl. Math. Lett. 110, 106584 (2020)

    MathSciNet  MATH  Google Scholar 

  55. Al Khawaja, U., Bahlouli, H.: Integrability conditions and solitonic solutions of the nonlinear Schrödinger equation with generalized dual-power nonlinearities, PT-symmetric potentials, and space- and time-dependent coefficients. Commun. Nonlinear. Sci. Numer. Simulat. 42, 165201 (2019)

    MATH  Google Scholar 

  56. Yan, Z.Y., Jiang, D.M.: Matter-wave solutions in Bose-Einstein condensates with harmonic and Gaussian potentials. Phys. Rev. E. 85, 056608 (2012)

Download references

Acknowledgements

This work was sponsored by the project of department education of Liaoning province, China (Grant No. LJKZ01007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fajun Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (txt 60 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Yu, F. Stabilities and interaction dynamics for flat-top bright soliton solutions of a generalized Gross-Pitaevskii(GGP(n,n)) equation with Gaussian-harmonic-radial PT-symmetric potential. Nonlinear Dyn 110, 3721–3735 (2022). https://doi.org/10.1007/s11071-022-07819-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07819-3

Keywords

Navigation