Log in

Heat flux localization and abnormal size effect induced by multi-body vibration in complex networks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Heat conduction in real physical networks such as nanotube/nanowire networks has been attracting more and more attention, but its theoretical understanding is far behind. To open a way to this problem, we present a multi-body vibration model to study heat conduction in complex networks, where nodes’ degrees satisfy a random distribution, and links consist of 1D atom chains with nonlinear springs. Based on this model, we find two interesting phenomenons: (1) The main heat fluxes of a network always localize in a skeleton subnetwork, which may have potential applications in thermal management and thermal concentrators, and (2) there exists an abnormal size effect of heat conduction in complex networks, i.e., the total heat flux of a network will enlarge with the increase of atoms on links, which is in contrast to the previous result on a 1D chain. Furthermore, we introduce a transmission diagram to characterize the skeleton of localized heat fluxes and then discover a jum** transition of total heat flux in the process of removing links, implying that the control of heat flux can be effective only when the change in a network topology focuses on the links within the skeleton. A brief theory is introduced to explain the abnormal size effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statements

All data generated or analyzed during this study are included in this published article.

References

  1. Albert, R., Barabasi, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Critical phenomena in complex networks. Rev. Mod. Pyhs. 80, 1275 (2008)

    Article  Google Scholar 

  4. Albert, R., Jeong, H., Barabsi, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  5. Stam, C.J.: Characterization of anatomical and functional connectivity in the brain: a complex networks perspective. Int. J. Psychophysiol. 77, 186–194 (2010)

    Article  Google Scholar 

  6. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015)

    Article  MathSciNet  Google Scholar 

  7. Tian, C., Cao, L., Bi, H., Xu, K., Liu, Z.: Chimera states in neuronal networks with time delay and electromagnetic induction. Nonlinear Dynam. 93, 1695–1704 (2018)

    Article  Google Scholar 

  8. Wu, J., Zheng, M., Xu, K., Gu, C.: Effects of two channels on explosive information spreading. Nonlinear Dyn. 99, 2387–2397 (2020)

    Article  Google Scholar 

  9. Liu, Z.H., Wu, X., Yang, H.J., Gupte, N., Li, B.W.: Heat flux distribution and rectification of complex networks. New J. Phys. 12, 023016 (2010)

    Article  Google Scholar 

  10. Volkov, A.N., Zhigilei, L.V.: Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials. Phys. Rev. Lett. 104, 215902 (2010)

    Article  Google Scholar 

  11. **ong, K., Zhou, J., Tang, M., Zeng, C., Liu, Z.: Control of thermal conduction and rectification in a model of complex networks with two asymmetric parts. Phys. Rev. E 98, 062144 (2018)

    Article  Google Scholar 

  12. **ong, K., Zeng, C., Liu, Z.: Effect of degree correlation on the thermal transport in complex networks. Nonlinear Dyn. 94, 3067 (2018)

    Article  Google Scholar 

  13. **ong, K., Zeng, C., Liu, Z., Li, B.: Influence of the degree of a complex network on heat conduction. Phys. Rev. E 98, 022115 (2018)

    Article  Google Scholar 

  14. **ong, K., Liu, Z., Zeng, C., Li, B.: Thermal-siphon phenomenon and thermal/electric conduction in complex networks. Natl. Sci. Rev. 7, 270–277 (2020)

    Article  Google Scholar 

  15. **ong, K., Yan, Z., **e, Y., Liu, Z.: Regulating heat conduction of complex networks by distributed nodes masses. Sci. Rep. 11, 5501 (2021)

    Article  Google Scholar 

  16. Lee, B.Y., Sung, M.G., Lee, H., Namgung, S., Park, S.Y., Choi, D.S., Hong, S.: Integrated devices based on networks of nanotubes and nanowires. NPG Asia. Mater. 2, 103–111 (2010)

    Article  Google Scholar 

  17. Ceylan, H., et al.: Size-controlled conformal nanofabrication of biotemplated three-dimensional tio 2 and zno nanonetworks. Sci. Rep. 3, 2306 (2013)

    Article  Google Scholar 

  18. Yang, Y., Yang, X., Liang, L., Gao, Y., Cheng, H., Li, X., Duan, X.: Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019)

    Article  Google Scholar 

  19. Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y., Gogotsi, Y.: Energy storage: The future enabled by nanomaterials. Science 366, 6468 (2019)

    Article  Google Scholar 

  20. Son, D., Kang, J., Vardoulis, O., Kim, Y., Matsuhisa, N., Oh, J.Y., Bao, Z.: An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018)

    Article  Google Scholar 

  21. Kang, T.H., Chang, H., Choi, D., Kim, S., Moon, J., Lim, J.A., Yi, H.: Hydrogel-templated transfer-printing of conductive nanonetworks for wearable sensors on topographic flexible substrates. Nano Lett. 19, 3684–3691 (2019)

    Article  Google Scholar 

  22. Hochstetter, J., Zhu, R., Loeffler, A., Diaz-Alvarez, A., Nakayama, T., Kuncic, Z.: Avalanches and edge-of-chaos learning in neuromorphic nanowire networks. Nat. Commun. 12, 1–13 (2021)

    Article  Google Scholar 

  23. Shen, D., Zhan, Z., Liu, Z., Cao, Y., Zhou, L., Liu, Y., Yu, J.: Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires. Sci. Rep. 7, 1–11 (2017)

    Google Scholar 

  24. Vignolini, S., Yufa, N. A., Cunha, P. S., Guldin, S., Rushkin, I., Stefik, M., et al.: A 3d optical metamaterial made by self-assembly. Adv. Mater. 24, OP23–OP27 (2012)

  25. Rauber, M., Alber, I., Muller, S., Neumann, R., Picht, O., Roth, C., Ensinger, W.: Highly-ordered supportless three-dimensional nanowire networks with tunable complexity and interwire connectivity for device integration. Nano Lett. 11, 2304–2310 (2011)

    Article  Google Scholar 

  26. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1 (2003)

    Article  MathSciNet  Google Scholar 

  27. Dhar, A.: Heat transport in low-dimensional systems. Adv. Phys. 57, 457 (2008)

    Article  Google Scholar 

  28. Li, N., Ren, J., Wang, L., Zhang, G., Hanggi, P., Li, B.: Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045 (2012)

    Article  Google Scholar 

  29. Liu, Z., Li, B.: Heat conduction in simple networks: the effect of interchain coupling. Phys. Rev. E 76, 051118 (2007)

    Article  Google Scholar 

  30. Lepri, S., Livi, R., Politi, A.: Heat conduction in chains of nonlinear oscillators. Phys. Rev. Lett. 78, 1896 (1997)

    Article  Google Scholar 

  31. Chen, J., Zhang, G., Li, B.: Molecular dynamics simulations of heat conduction in nanostructures: effect of heat bath. J. Phys. Soc. Jpn. 79, 074604 (2010)

    Article  Google Scholar 

  32. Hu, B., Li, B., Zhao, H.: Heat conduction in one-dimensional chains. Phys. Rev. E 57, 2992 (1998)

    Article  Google Scholar 

  33. Hu, B., Li, B., Zhao, H.: Heat conduction in one-dimensional nonintegrable systems. Phys. Rev. E 61, 3828 (2000)

    Article  Google Scholar 

  34. Li, B., Wang, L., Casati, G.: Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004)

    Article  Google Scholar 

  35. Kryven, I.: Bond percolation in coloured and multiplex networks. Nat. Commun. 10, 404 (2019)

    Article  Google Scholar 

  36. Zhang, Y., Blattner, M., Yu, Y.: Heat conduction process on community networks as a recommendation model. Phys. Rev. Lett. 99, 154301 (2007)

    Article  Google Scholar 

  37. Shen, X., Li, Y., Jiang, C., Ni, Y., Huang, J.: A thermal theory for unifying and designing transparency, concentrating and cloaking. Appl. Phys. Lett. 109, 031907 (2016)

    Article  Google Scholar 

  38. Wang, R., Xu, L., Ji, Q., Huang, J.: Thermal cloak-concentrator. Appl. Phys. 123, 115117 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grant Nos. 12005166, 11675056 and 11835003, and the Natural Science Foundation of Shaanxi Provincial Department of Education under Grant No. 20JK0764.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kezhao **ong.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ong, K., Yan, Z., **e, Y. et al. Heat flux localization and abnormal size effect induced by multi-body vibration in complex networks. Nonlinear Dyn 110, 2771–2779 (2022). https://doi.org/10.1007/s11071-022-07684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07684-0

Keywords

Navigation